
COMBINATORICA
Bolyai Society – Springer-Verlag

COMBINATORICA 19 (3) (1999) 375–401

FAST ALGORITHMS FOR FINDING O(Congestion + Dilation)
PACKET ROUTING SCHEDULES

TOM LEIGHTON, BRUCE MAGGS and ANDRÉA W. RICHA

Received July 8, 1996

In 1988, Leighton, Maggs, and Rao showed that for any network and any set of packets whose
paths through the network are fixed and edge-simple, there exists a schedule for routing the packets
to their destinations in O(c+d) steps using constant-size queues, where c is the congestion of the
paths in the network, and d is the length of the longest path. The proof, however, used the Lovász
Local Lemma and was not constructive. In this paper, we show how to find such a schedule in
O(m(c+d)(logP)4(log logP)) time, with probability 1−1/Pβ , for any positive constant β, where
P is the sum of the lengths of the paths taken by the packets in the network, and m is the number
of edges used by some packet in the network. We also show how to parallelize the algorithm so
that it runs in NC. The method that we use to construct the schedules is based on the algorithmic
form of the Lovász Local Lemma discovered by Beck.

1. Introduction

I n this paper, we consider the problem of scheduling the movements of packets
whose paths through a network have already been determined. The problem is
formalized as follows. We are given a network with n nodes (switches) and m edges
(communication channels). Each node can serve as the source or destination of an
arbitrary number of packets (or cells or flits , as they are sometimes referred to).
Let N denote the total number of packets to be routed. The goal is to route the
N packets from their origins to their destinations via a series of synchronized time
steps, where at each step at most one packet can traverse each edge and each packet
can traverse at most one edge. Without loss of generality, we assume that all edges
in the network are used by the path of some packet, and thus that m gives the
number of such edges (all the other edges are irrelevant to our problem).

Mathematics Subject Classification (1991): 68M20, 68M10, 68M07, 60C05

Tom Leighton is supported in part by ARPA Contracts N00014-91-J-1698 and N00014-92-

J-1799. Bruce Maggs is supported in part by an NSF National Young Investigator Award under

Grant No. CCR–94–57766, with matching funds provided by NEC Research Institute, and by

ARPA Contract F33615–93–1–1330. Part of this research was conducted while Andréa Richa

was at Carnegie Mellon University, supported by NSF National Young Investigator Award under

Grant No. CCR–94–57766, with matching funds provided by NEC Research Institute, and ARPA

Contract F33615–93–1–1330.

0209–9683/99/$6.00 c©1999 János Bolyai Mathematical Society

376 TOM LEIGHTON, BRUCE MAGGS, ANDRÉA W. RICHA

Figure 1 shows a 5-node network in which one packet is to be routed to each
node. The shaded nodes in the figure represent switches, and the edges between
the nodes represent channels. A packet is depicted as a square box containing the
label of its destination.

During the routing, packets wait in three different kinds of queues. Before the
routing begins, packets are stored at their origins in special initial queues. When a
packet traverses an edge, it enters the edge queue at the end of that edge. A packet
can traverse an edge only if at the beginning of the step, the edge queue at the
end of that edge is not full. Upon traversing the last edge on its path, a packet is
removed from the edge queue and placed in a special final queue at its destination.
In Figure 1, all of the packets reside in initial queues. For example, packets 4 and 5
are stored in the initial queue at node 1. In this example, each edge queue is empty,
but has the capacity to hold two packets. Final queues are not shown in the figure.
Independent of the routing algorithm used, the sizes of the initial and final queues
are determined by the particular packet routing problem to be solved. Thus, any
bound on the maximum queue size required by a routing algorithm refers only to
the edge queues.

1

2
1

3

45

5 4

2

3

Fig. 1. A graph model for packet routing

We focus on the problem of timing the movements of the packets along their
paths. A schedule for a set of packets specifies which move and which wait at each
time step. The length of a schedule is the number of time steps required to route all
the packets to their destinations according to the schedule. Given any underlying
network, and any selection of paths for the packets, our goal is to produce a schedule

FINDING O(Congestion + Dilation) PACKET ROUTING SCHEDULES 377

for the packets that minimizes the length of the schedule and the maximum queue
size needed to route all of the packets to their destinations.

Of course, there is a strong correlation between the time required to route the
packets and the selection of the paths. In particular, the maximum distance, d,
traveled by any packet is always a lower bound on the time. We call this distance
the dilation of the paths. Similarly, the largest number of packets that must traverse
a single edge during the entire course of the routing is a lower bound. We call this
number the congestion, c, of the paths. Figure 2 shows a set of paths for the packets
of Figure 1 with dilation 3 (since the path followed by the packet going from node
5 to node 3 has length 3) and congestion 3 (since three paths use the edge between
nodes 1 and 2).

1

2
1

3

45

5 4

2

3

Fig. 2. A set of paths for the packets with dilatation d=3 and congestion c=3

Given any set of paths with congestion c and dilation d, in any network, it is
straightforward to route all of the packets to their destinations in cd steps using
queues of size c at each edge. In this case the queues are big enough that a packet
can never be delayed by a full queue in front, so each packet can be delayed at most
c−1 steps at each of at most d edges on the way to its destination.

In [9], Leighton, Maggs, and Rao showed that there are much better schedules.
In particular, they established the existence of a schedule using O(c+d) steps and
constant-size queues at every edge, thereby achieving the naive lower bounds (up to
constant factors) for any routing problem. The result is highly robust in the sense
that it works for any set of edge-simple paths and any underlying network. (A
priori, it would be easy to imagine that there might be some set of paths on some

378 TOM LEIGHTON, BRUCE MAGGS, ANDRÉA W. RICHA

network that requires more than Ω(c+d) steps or larger than constant-size queues to
route all the packets.) The method that they use to show the existence of optimal
schedules, however, is not constructive. In other words, prior to this work, the
fastest known algorithms for producing schedules of length O(c+d) with constant-
size edge queues required time that is exponential in the number of packets.

1.1. Our results

In this paper, we show how to produce schedules of length O(c+ d) in O(m(c+
d)(logP)4(log logP)) time steps, with probability at least 1−1/Pδ, for any constant
δ > 0, where m is the number of distinct edges traversed by some packet in the
network. The schedules can also be found in polylogarithmic time on a parallel
computer using O(m(c+d)(logP)4(log logP)) work, with probability at least 1−
1/Pδ.

The algorithm for producing the schedules is based on an algorithmic form
of the Lovász Local Lemma (see [6] or [20, pp. 57–58]) discovered by Beck [3].
Showing how to modify Beck’s arguments so that they can be applied to scheduling
problems is the main contribution of our work. Once this is done, the construction
of asymptotically optimal routing schedules is accomplished using the methods of
[9].

The result has several applications. For example, if a particular routing prob-
lem is to be performed many times over, then it may be feasible to compute an
asymptotically optimal schedule once using global control. This situation arises in
network emulation problems.

Typically, a guest network G can be emulated by a host network H by em-
bedding G into H . An embedding maps nodes of G to nodes of H , and edges of
G to paths in H — an edge (x,y) of G is mapped to some path in H between the
nodes of H that x and y were mapped to. There are three important measures of
an embedding: the load, congestion, and dilation. The load of an embedding is the
maximum number of nodes of G that are mapped to any one node of H . The con-
gestion of an embedding is the maximum number of paths corresponding to edges
of G that use any one edge of H . The dilation of an embedding is the length of the
longest path of H in the embedding. Let l, c, and d denote the load, congestion,
and dilation of the embedding, respectively.

Once G has been embedded in H , H can emulate G in a step-by-step fashion as
follows. Each node of H first emulates the local computations performed by the l (or
fewer) nodes mapped to it. This takes O(l) time. Then for each packet sent along
an edge of G, H sends a packet along the corresponding path in the embedding.
The algorithm described in this paper can be used to produce a schedule in which
the packets are routed to their destinations in O(c+d) steps. Thus, H can emulate
each step of G in O(l+c+d) steps with constant size queues, where l is the load of
this embedding.

FINDING O(Congestion + Dilation) PACKET ROUTING SCHEDULES 379

Our packet routing result also has applications to job-shop scheduling. In par-
ticular, consider a scheduling problem with jobs j1, . . . , jr, and machines m1, . . . ,ms,
for which each job must be performed on a specified sequence of machines. In this
application, we assume that each job occupies each machine that works on it for
a unit of time, and that no machine has to work on any job more than once.
Of course, the jobs correspond to packets, and the machines correspond to edges.
Hence, we can define the dilation of the scheduling problem to be the maximum
number of machines that must work on any job, and the congestion to be the max-
imum number of jobs that have to be run on any machine. As a consequence of
the packet routing result, we know that any scheduling problem can be solved in
O(c+ d) steps. In addition, we know that there is a schedule for which each job
waits at most O(c+ d) steps before it starts running, and that each job waits at
most a constant number of steps in between consecutive machines. The queue of
jobs waiting for any machine will always have at most a constant number of jobs.

1.2. Related work

Scheideler recently presented in [18] an alternative simpler proof (than that of [9])
for the existence of O(c+d)-step schedules that only require edge queues of size 2.
The main idea in his proof is to decompose the problem in a different way by using
“secure edges”.

In [13], Meyer auf der Heide and Scheideler showed the existence of an off-line
protocol that only requires edge queues of size 1. However, the schedule produced
by this protocol has length O([d+c(log(c+d))(log log(c+d))] log log log(1+ε)(c+d)),
for any constant ε>0.

For the class of leveled networks, Leighton, Maggs, Ranade, and Rao [8] showed
that there is a simple on-line randomized algorithm for routing the packets to their
destinations within O(c+L+ logN) steps, with high probability, where L is the
number of levels in the network, and N is the total number of packets. (In a leveled
network with L levels, each node is labeled with a level number between 0 and L−1,
and every edge that has its tail on level i has its head on level i+1, for 0≤ i<L−1.)

Mansour and Patt-Shamir [12] showed that if packets are routed greedily on
shortest paths, then all of the packets reach their destinations within d+N steps.
These schedules may be much longer than optimal, however, because N may be
much larger than c. Meyer auf der Heide and Vöcking [14] devised a simple on-line
randomized algorithm that routes all packets to their destinations in O(c+d+logN)
steps, with high probability, provided that the paths taken by the packets are short-
cut free (e.g., shortest paths).

Recently, Rabani and Tardos [16], and Ostrovsky and Rabani [15] extended
the main ideas used in [9] and in the centralized algorithm presented in this work
to obtain on-line local control algorithms for the general packet routing problem
that produce near-optimal schedules. More specifically, Rabani and Tardos [16]
show a randomized on-line algorithm that with high probability delivers all packets

380 TOM LEIGHTON, BRUCE MAGGS, ANDRÉA W. RICHA

in O(c+d((log∗N)O(log∗N))+log6N) steps; Ostrovsky and Rabani [15] improved
on this result by presenting a randomized on-line algorithm that delivers all the
packets to their destinations in O(c+d+log(1+ε)N) steps with high probability, for
arbitrary ε>0.

It was also in recent work that Srinivasan and Teo [21] answered a long-standing
question: Given source and destination nodes for each packet, can we select the
routing paths for the N packets, with congestion c and dilation d, in order to
approximate the minimum value of c+ d (over all possible choices of paths) to
within a constant factor? (Finding the minimum value of c+d is NP-hard.) They
provided an algorithm that selects such paths in polynomial time; by applying
our algorithm on the selected paths, Srinivasan and Teo described the first off-line
constant factor approximation algorithm for routing N packets (if we are only given
the source and destination nodes of each packet) using constant-size queues. It is
interesting to note that there is still no known polynomial-time algorithm for which
the congestion c alone is asymptotically optimal: It was clever (and crucial) that
Srinivasan and Teo minimized the sum c+d rather than just c.

The problem of scheduling packets through given paths strongly relates to
network emulations via embeddings, as we discussed. Koch et al. in [7], and Maggs
and Schwabe in [11] address the problem of performing network emulations via
embeddings.

Shmoys, Stein, and Wein [19] give randomized and deterministic algorithms
that produce schedules of length within a polylogarithmic factor of that of an
optimal schedule for a more general job-shop scheduling problem than the one we
consider, when jobs are not assumed to have unit length and a machine may have
to work on the same job more than once.

1.3. Outline

The remainder of this paper is divided as follows. In Section 2, we give a very brief
overview of the non-constructive proof in [9]. We also introduce some definitions,
and present two important propositions and a new lemma that will be of later
use. In Section 3, we describe how to make the non-constructive method in [9]
constructive. In Section 4, we analyze the running time of the algorithm. The
propositions presented in Sections 2 and 3 are meant to replace (and are numbered
according to) some of the lemmas in [9].

In Section 5, we show how to parallelize the scheduling algorithm. We conclude
with some remarks in Section 6.

2. Preliminaries

In [9], Leighton, Maggs, and Rao proved that for any set of packets whose paths
are edge-simple and have congestion c and dilation d, there is a schedule of length
O(c+d) in which at most one packet traverses each edge of the network at each step,

FINDING O(Congestion + Dilation) PACKET ROUTING SCHEDULES 381

and at most a constant number of packets wait in each queue at each step. (An
edge-simple path uses no edge more than once.) Note that there are no restrictions
on the size, topology, or degree of the network or on the number of packets.

The strategy for constructing an efficient schedule is to make a succession of
refinements to the “greedy” schedule, S0, in which each packet moves at every step
until it reaches its final destination. This initial schedule is as short as possible: Its
length is only d. Unfortunately, as many as c packets may traverse an edge at a
single time step in S0, whereas in the final schedule at most one packet is allowed
to traverse an edge at each step. Each refinement will bring us closer to meeting
this requirement.

The proof uses the Lovász Local Lemma ([6] or [20, pp. 57–58]) at each
refinement step. Given a set of “bad” events in a probability space, the lemma
provides a simple inequality that, when satisfied, guarantees that with probability
greater than zero, no bad event occurs. The inequality relates the probability that
each bad event occurs with the dependence among them. A set of bad events
A1,A2, . . . ,Aq in a probability space has dependence at most b if every event is
mutually independent of some set of q− b− 1 other events. The lemma is non-
constructive; for a discrete probability space, it shows only that there exists some
elementary outcome that is not in any bad event.

Lemma [Lovász]. Let A1,A2, . . . ,Aq be a set of “bad” events, each occurring with
probability p, and with dependence at most b. If 4pb < 1, then with probability
greater than zero, no bad event occurs.

Before proceeding, we need to introduce some notation. A T -frame — or a
frame of size T — is a sequence of T consecutive time steps in a given schedule.
The congestion of an edge g in a T -frame is the number of packets that traverse g in
this frame; the relative congestion of edge g in a T -frame is given by the congestion
of g in the frame divided by the frame size T . The frame congestion of a T -frame is
the largest congestion of an edge in the frame; the relative congestion of a T -frame
is the largest relative congestion of an edge in the frame.

2.1. A pair of tools for later use

In this section we re-state Lemma 3.5 of [9] and we prove Proposition 3.6, which
replaces Lemma 3.6 of [9]. Both will be used in the proofs in Section 3.

Lemma 3.5. [9] In any schedule, if the number of packets that traverse a particular
edge g in any y-frame is at most Ry, for all y between T and 2T − 1, then the
number of packets that traverse g in any y-frame is at most Ry, for all y≥T .

Proof. Consider a frame τ of size T ′, where T ′> 2T −1. The first (bT ′/T c−1)T
steps of the frame can be broken into T -frames. In each of these T -frames, at most
RT packets traverse g. The remainder of the T ′-frame τ consists of a single y-frame,
where T ≤y≤2T −1, in which at most Ry packets traverse g.

382 TOM LEIGHTON, BRUCE MAGGS, ANDRÉA W. RICHA

The following proposition is basically a re-statement of Lemma 3.6 of [9] and
will be used here in place of this lemma. Proposition 3.6 applies when the number
of distinct edges traversed by the packets in the schedule considered, m′, is at most
a polynomial in I (I as defined below).

Proposition 3.6. Suppose that (i) there are positive constants α1,α2,α3, where
α1 ≥ α2, α1 ≥ 2α3, and α3 ≥ α2; (ii) I is greater than some sufficiently large
constant; and (iii) for all edges g, in a schedule of length Iα1 (or smaller), the
relative congestion of edge g in frames of size Iα2 or larger is at most ρg, where

ρg is a constant. Let m′ be the number of distinct edges traversed by the packets
in this schedule. Furthermore, suppose that each packet is assigned a delay chosen
randomly, independently, and uniformly from the range [0, Iα2], and that if a packet
is assigned a delay of x, then x delays are inserted in the first Iα3 steps and Iα2−x
delays are inserted in the last Iα3 steps of the schedule.

1. Then for any constant ξ > 0, there exists a constant k1 > 0 such that with

probability at least 1−m′/Iξ the relative congestion of any edge g in any

frame of size log2 I or larger, in between the first and last Iα3 steps of the new
schedule is at most ρg(1+σ), for σ=k1/

√
logI.

2. We can find such a schedule and verify whether it satisfies the conditions in 1.

in O(m′Iα1(log2 I)) time.

Proof. To bound the relative congestions of each edge in frames of size log2 I or
larger, we need to consider all m′ edges and, by Lemma 3.5, all frames of size
between log2 I and 2log2 I−1.

As we shall see, the number of packets that traverse an edge g during a
particular T -frame τ has a binomial distribution. In the new schedule, a packet can
traverse g during τ only if in the original schedule it traversed g during τ or during
one of the Iα2 steps before the start of τ . Since the relative congestion of edge g
in any frame of size Iα2 or greater in the original schedule is at most ρg, there are
at most ρg(Iα2 +T) such packets. The probability that an individual packet that
could traverse g during τ actually does so is at most T/Iα2 . Thus, the probability
p that ρ′g or more packets traverse an edge g during a particular T -frame τ is at
most

p ≤
ρg(Iα2+T)∑
k=ρ′g

(
ρg(Iα2 + T)

k

)(
T

Iα2

)k (
1− T

Iα2

)ρg(Iα2+T)−k
.

To estimate the area under the tails of this binomial distribution, we use the
following Chernoff-type bound [5]. Suppose that there are x independent Bernoulli
trials, each of which is successful with probability p′. Let S denote the number of
successes in the x trials, and let µ=E[S]=xp′. Following Angluin and Valiant [2],
we have

Pr[S ≥ (1 + γ)µ] ≤ e−γ2µ/3

FINDING O(Congestion + Dilation) PACKET ROUTING SCHEDULES 383

for 0≤γ≤1. (Note that e denotes the base of the natural logarithm.)

In our application, x=ρg(Iα2 +T), p′=T/Iα2 , and so µ=ρg(Iα2 +T)T/Iα2.

For γ=
√

3k0/ logI (where k0 is a positive constant to be specified later), ρg ≥ 1,

and T ≥ log2 I, we have Pr[S ≥ (1 +γ)µ]≤ e−k0ρg(Iα2+T)T/(Iα2 logI) ≤ e−k0 logI ≤
e−k0 lnI = 1/Ik0 . Set ρ′gT to be (1 + γ)µ = (1 +

√
3k0/ logI)ρg(Iα2 + T)T/Iα2.

For I large enough, 2 log2 I/Iα2 ≤ 1/
√

logI, and thus ρ′g ≤ ρg(1 + k1/
√

logI), for

some constant k1 ≥ 2
√

3k0 + 1. Let σ = k1/
√

logI. Then ρ′g ≤ ρg(1 + σ). Thus

p=Pr[S≥ρ′gT]≤Pr[S≥(1+γ)µ]≤1/Ik0.

Since there are at most (Iα1+Iα2)≤2Iα1 starting points for a frame, and log2 I

different size frames starting at each point, and there are at most m′ distinct edges
per frame, the probability that the relative congestion of any edge g is more than
ρ′g in any frame is at most 2m′Iα1 log2 I/Ik0 ≤m′/Ik0−α1−2 (since 2 log2 I ≤ I2).
For any ξ>0, we set k0 =ξ+α1+2, which in turn sets k1 and σ, and completes the
proof of part 1.

We assign a random delay to each packet, and verify whether the conditions in
1. apply as follows. We construct the schedule by routing all the packets one step
at a time. At time t, for Iα3≤ t≤ (Iα1 +Iα2−Iα3), we compute the congestion of
edge g in a T -frame ending at t, for all edges g that are traversed by some packet
in the schedule, for all T ∈ [log2 I,2log2 I−1] using the following rules: if T =log2 I
then the congestion of g in a T -frame ending at time t can be computed by taking
the congestion of g in the T -frame ending at t−1, subtracting the number of packets
that traverse edge g at time t−T and adding the number of packets that traverse
g at time t; otherwise if t≥T , then the congestion of edge g in a T -frame that ends
at t is given by the congestion of g in a (T −1)-frame that ends at t−1 plus the
number of packets that traverse edge g at time t. The relative congestion of an edge
in a frame is given by the congestion of the edge in the frame divided by the size
of the frame. This can be done in time O(m′(Iα1 + Iα2) log2 I) =O(m′Iα1 log2 I),
m′ being the number of distinct edges traversed in this schedule.

In the remainder of this paper, for a schedule of size polynomial in I, we
assume that we check for the congestions of all T -frames, log2 I ≤ T < 2log2 I, of
the schedule as described in the proof of Proposition 3.6.

3. An algorithm for constructing optimal schedules

In this section, we describe the key ideas required to make the non-constructive
proof of [9] constructive. There are many details in that proof, but changes are
required only where the Lovász Local Lemma is used, in Lemmas 3.2, 3.7, and
3.9 of [9]. The non-constructive proof showed that a schedule can be modified by
assigning delays to the packets in such a way that in the new schedule the relative

384 TOM LEIGHTON, BRUCE MAGGS, ANDRÉA W. RICHA

congestion can be bounded in much smaller frames than in the old schedule. In
this paper, we show how to find the assignment of delays quickly. We will not
regurgitate the entire proof of [9], but only reprove those three lemmas, trying
to state the replacement propositions in a way as close as possible to the original
lemmas.

In Section 3.1, we provide Proposition 3.2, which is a constructive version of
Lemma 3.2 of [9]. In Sections 3.2 and 3.3, we provide three propositions which are
meant to replace Lemma 3.7 of [9]. Lemma 3.7 is applied O(log∗(c+d)) times in
[9]. We will use Propositions 3.7.1 and 3.7.2 to replace the first two applications
of Lemma 3.7. The remaining applications will be replaced by Proposition 3.7.3.
In Section 3.4, we present the three replacement propositions for Lemma 3.9 of
[9]. Our belief is that a reader who understands the structure of the proof in [9]
and the propositions in this paper can easily see how to make the original proof
constructive. We analyze the running time of our algorithm in Section 4.

3.1. The first reduction in frame size

For a given set of N packets, let c and d denote the congestion and dilation of the
paths taken by these packets, and let P denote the sum of the lengths of these
paths. Note that m≤P ≤mc, and that c,d<P, where m is the number of edges
traversed by some packet in the network. The following proposition is meant to
replace Lemma 3.2 of [9]. It is used just once in the proof, to reduce the frame size
from d to logP.

Proposition 3.2. For any constant β>0, there is a constant α>0, such that there
exists an algorithm that constructs a schedule of length d+αc in which packets
never wait in edge queues and in which the relative congestion in any frame of size
logP or larger is at most 1. The algorithm runs in O(m(c+d)(logP)) time steps,

and succeeds with probability at least 1−1/Pβ .

Proof. The algorithm is simple: Assign each packet an initial delay that is chosen
randomly, independently, and uniformly from the range [0,αc], where α is a constant
that will be specified later; the packet will wait out its initial delay and then travel
to its destination without stopping. The length of the new schedule is at most
αc+d.

To bound the relative congestion in frames of size logP or larger, we need
to consider all m edges and, by Lemma 3.5, all frames of size between logP and
2logP−1. We assume without loss of generality that c> 2logP , since any frame
of length c or larger has relative congestion at most 1. For any particular edge g,
and T -frame τ , where logP ≤ T ≤ 2logP−1, the probability p that more than T

FINDING O(Congestion + Dilation) PACKET ROUTING SCHEDULES 385

packets use g in τ is at most

p ≤
c∑

i=T+1

(
c

i

)(
T

αc

)i(
1− T

αc

)c−i

≤
(

c

T + 1

)(
T

αc

)(T+1)

≤
(e
α

)(T+1)

since each of the at most c packets that pass through g has probability at most
T/αc of using g in τ , and since

(a
b

)
≤ (ae/b)b, for any 0<b≤a. The total number

of frames to consider is at most (αc+d) logP , since there are at most αc+d places
for a frame to start and logP frame sizes. Thus the probability that the relative
congestion of any edge is too large in any frame of size logP or larger is at most

m(logP)(αc + d)
(e
α

)logP
.

We bound the probability above by summing the probabilities that the relative
congestion is too large for all m(logP) edge-frame pairs. Using the inequalities
P ≥ c, P ≥ m, and P ≥ d, we have that for any constant β > 0, there exists a
constant α>0, such that this probability is at most 1/Pβ .

Assigning the delays to the packets takes O(N) time steps. Verifying whether
the relative congestion is at most 1 in any T -frame of size logP≤T ≤2logP−1 can
be done in O(m(c+d)(logP)) time steps (as described in the last paragraph of the
proof of Proposition 3.6).

Before applying Proposition 3.7.1, we first apply Proposition 3.2 to produce a
schedule S1 of length O(c+d) in which the relative congestion in any frame of size
logP or larger is at most 1. For any positive constant β, this step succeeds with
probability at least 1−1/Pβ . If it fails, we simply try again.

3.2. A randomized algorithm to reduce the frame size

In this section, we prove two very similar propositions, Propositions 3.7.1 and 3.7.2,
which are meant to replace the first two applications of Lemma 3.7 of [9], which we
state below. In proving all these propositions, we use a constructive version of the
Lovász Local Lemma that applies to scheduling problems. Let I ≥ 0. We break a
schedule S into blocks of 2I3 +2I2−I consecutive time steps. The size of a block
is the number of time steps it spans.

Lemma 3.7. [9] In a block of size 2I3 +2I2− I, let the relative congestion in any
frame of size I or greater be at most r, where 1≤ r ≤ I. Then there is a way of

386 TOM LEIGHTON, BRUCE MAGGS, ANDRÉA W. RICHA

assigning delays to the packets so that in between the first and the last I2 steps of

this block, the relative congestion in any frame of size I1 = log2 I or greater is at
most r1 =r(1+ε1), where ε1 =O(1)/

√
logI.

After applying Proposition 3.2 to reduce the frame size from d to logP, Propo-
sitions 3.7.1 and 3.7.2 are used once on each block (for I=logP and I=(log logP)2

respectively) to further reduce the frame size. Unlike Lemma 3.7 of [9], Proposi-
tions 3.7.1 and 3.7.2 may increase the relative congestion by a constant factor. In
general, we cannot afford to pay a constant factor at each of the O(log∗(c+ d))
applications of Lemma 3.7 of [9], but we can afford to pay it twice.

These two propositions avoid the use of exhaustive search, since they relate
to problem sizes that are still large: In these propositions we design separate
algorithms that use the fact that the problem sizes are sufficiently large in order
to guarantee a “good” solution with high probability. In the remainder of this
paper, we assume without loss of generality that P is not a constant. If P=O(1),
then we can find an optimal schedule in a constant number time steps by using
exhaustive search. For the application of Proposition 3.7.1, I = logP and r = 1.
With probability at least 1−1/Pβ , for any constant β>0, we succeed in producing
a schedule S2 in which the relative congestion is O(1) in frames of size log2 I =
(loglogP)2 or greater (if we should fail, we simply try again). In the application of
Proposition 3.7.2, I = (loglogP)2, and r=O(1); in the resulting schedule, S3, the
relative congestion is O(1) in frames of size log2((log logP)2)=(log log logP)O(1) or
greater, with probability at least 1−1/Pβ , for any constant β > 0. At this point,
the problem sizes are small enough for using exhaustive search, and we start using
Proposition 3.7.3.

Proposition 3.7.1. Let the relative congestion in any frame of size I or greater be

at most r in a block of size 2I3 +2I2− I, where 1≤ r≤ I and I = logP . Let q be
the number of distinct edges traversed by the packets in this block. Then, for any
constant β>0,

1. there is an algorithm for assigning initial delays in the range [0, I] to the packets

so that in between the first and last I2 steps of the block, the relative congestion

in any frame of size log2 I or greater is at most r′, where r′ = 2r(1 +σ) and

σ=O(1)/
√

logI;

2. this algorithm runs in O(q(logP)4(log logP)) time steps, with probability at

least 1−1/Pβ .

Proof. We define the bad event for each edge g in the network and each T -frame
τ , log2 I ≤T ≤ 2log2 I−1, as the event that more than r′T packets use g in τ . A
particular bad event may or may not occur — i.e., may or may not be true — in a
given schedule. If no bad event occurs, then by Lemma 3.5, the relative congestion
in all frames of size log2 I or greater will be at most r′. Since there are log2 I

FINDING O(Congestion + Dilation) PACKET ROUTING SCHEDULES 387

different frame sizes and there are at most (2I3 +2I2−I)+I = 2I3 +2I2 different
frames of any particular size, the total number of bad events involving any one edge
is at most (2I3 +2I2) log2 I <I4, for I greater than some large enough constant.

We now describe the algorithm for finding the assignment. In a first pass of
assigning delays to the packets, we process the packets one at a time. To each
packet, we assign a delay chosen randomly, independently, and uniformly from 0 to
I. We then examine every event in which the packet participates.

A packet can use an edge g in a T -frame τ only if it traversed edge g in τ
or in one of the I steps preceding τ in the original schedule. At most r(T + I)
packets use edge g in a frame of size (I+T), since the relative congestion in this
frame is at most r in the original schedule. Thus at most r(T + I) packets can
traverse edge g in the new schedule (after delays are assigned to the packets). We
call these at most r(I+T) packets the candidate packets to use edge g in τ . Let Cg
be the number of candidate packets to use g in τ that have been assigned delays
so far. We say that the event for an edge g and a T -frame τ is critical if more
than CgT/I+kr(I+T)T/(I

√
logI) packets actually traverse edge g in τ , where k

is a positive constant to be specified later. Intuitively, an event becomes critical if
the number of packets assigned delays so far that traverse edge g in τ exceeds the
expected number of such packets, CgT/I, by an excess term kr(I+T)T/(I

√
logI).

Since Cg ≤ r(T + I), we allow an excess of at most k/
√

logI times the expected
number of packets that would use edge g in the frame if all of the packets were
assigned delays. Hence, the maximum final excess allowed does not depend on Cg.
If a packet causes an event to become critical, then we set aside all of the other
packets that could also use g during τ , but whose delays have not yet been assigned.

The main difference between our algorithm and Beck’s [3] constructive version
of the Lovász Local Lemma is that we never allow the number of packets passing
through an edge in a T -frame to deviate from the expectation by more than a low
order term. In particular, we do not allow this number to deviate by a constant
factor times the expectation. In Beck’s algorithm, the random variable associated
with a bad event (in our case, the number of packets that traverse an edge in a T -
frame) may deviate from the expectation by a constant factor times the expectation.

We will deal with the packets that have been set aside later. Let P denote
the set of packets that have been assigned delays. As we shall see, after one pass
of assigning random delays to the packets, the problem of scheduling the packets
that have been set aside is broken into a collection of much smaller subproblems,
with probability at least 1− 1/Pβ′ , for any constant β′ > 0. Once the size of a
subproblem (given by the number of edges involved in the subproblem) gets small
compared to the frame length, we can try assigning random delays to the packets
that were set aside.

In this initial pass, we assign a random delay to each packet, and check whether
the event for an edge g traversed by the packet in this block and T -frame τ becomes
critical, for all edges g traversed by the packet in this block and for all frames of
size T in [log2 I,2log2 I−1], by following the same procedure described in the last
paragraph of the proof of Proposition 3.6. Here the schedule length after we insert

388 TOM LEIGHTON, BRUCE MAGGS, ANDRÉA W. RICHA

the delays is 2(I3 +I2)=O(log3P) (and so there are O(log3P) starting points for
a T -frame τ) and there are log2 I = (loglogP)2 different frame sizes to consider.
The sum of the lengths of the paths traversed by the packets in this block is q.
Thus, a pass takes O(q(logP)3(log logP)2) time steps. If a pass fails to reduce the
component size, we try again.

In order to proceed, we must introduce some notation. The dependence graph,
G, is the graph in which there is a node for each bad event, and an edge between
two nodes if the corresponding events share a packet. Let b denote the degree of
G. Whether or not a bad event for an edge g and a time frame τ occurs depends
solely on the assignment of delays to the packets that pass through g. Thus, the
bad event for an edge g and a time frame τ , and the bad event for an edge g′
and a time frame τ ′ are dependent only if g and g′ share a packet. Since at most
r(2I3+2I2−I)≤rI4 (for I large enough) packets pass through g and each of these
packets passes through at most 2I3+2I2−I≤I4 other edges g′, and since there are
at most (2I3 +2I2)(log2 I)≤ I4 time frames τ ′, the dependence b is at most rI12.
For r≤ I, we have b≤ I13. Since the packets use at most q different edges in the
network, and for each edge there are at most I4 bad events, the total number of
nodes in G is at most qI4. We say that a node in G is critical if the corresponding
event is critical. We say that a node is endangered if its event shares a packet with
an event that is critical. After each packet has been either assigned a delay or set
aside, let G1 denote the subgraph of G consisting of the critical and endangered
nodes and the edges between them. If a node is not in G1, then all of the packets
that use the corresponding edge have already been assigned a delay, and the bad
event represented by that node cannot occur, no matter how we assign delays to
the packets not in P . Hence, from here on we need only consider the nodes in G1.

Since different components are not connected by edges in G1, no two compo-
nents share a packet. Also, any two events that involve edges traversed by the same
packet share an edge in G1, and so are in the same connected component. Thus
there exists a one-to-one correspondence between components of G1 and disjoint
sets in a partition of the packets not in P . Hence, we can assign the delays to the
packets in each component separately.

In the following claim, we show that, with high probability, the size of the
largest connected component U of G1 is at most I52 logP, with high probability.
Hence we have reduced the maximum possible size of a component from qI4 in G

to I52 logP in G1. Recall that the constant k (which we still need to specify) is
used to determine whether an event becomes critical.

Claim 1. For any constant β′> 0, there exists a constant k > 0 such that the size

of the largest connected component of G1 is at most I52 logP with probability at

least 1−1/Pβ′ .

Proof. The trick to bounding the size of a largest connected component U is to
observe that the subgraph of critical nodes in U is connected in the cube, G3

1, of

FINDING O(Congestion + Dilation) PACKET ROUTING SCHEDULES 389

the graph G1 — i.e., in the graph in which there is an edge between two distinct
nodes u and v if and only if in G1 there is a path of length at most 3 between
u and v. In G3

1, the critical nodes of U form a connected subgraph because any
path u,e1,e2,e3,v in G1 that connects two critical or endangered nodes u and v by
passing through three consecutive endangered nodes e1, e2, e3 can be replaced by
two paths u,e1,e2,w and w,e2,e3,v of length 3 that each pass through e2’s critical
neighbor w. Let G2 denote the subgraph of G3

1 consisting only of the critical nodes
and the edges between them. Note that the degree of G2 is at most b3, and if two
critical nodes lie in the same connected component in G2, then they also lie in the
same connected component in G3

1, and hence in G1.

By a similar argument, any maximal independent set of nodes in a connected
component of G2 is connected in G3

2. Note that if a set of nodes is independent
in G2, then it is also independent in G3

1 and in G1. The nodes in an independent
set in G1 do not share any packets, therefore the probabilities that each of these
nodes becomes critical are independent. Let G3 be the subgraph of G3

2 induced by
the nodes in a maximal independent set in G2 (any maximal independent set in G2
will do). The nodes in G3 form an independent set of critical nodes in G1. The
degree of G3 is at most b9.

Our goal now is to show that, for any constant β′>0, there exists a constant
k > 0 such that the number of nodes in any connected component W of G3 is at
most logP, with probability 1−1/Pβ′ . To begin, with every connected component
W of G3, we associate a spanning tree of W (any such tree will do). Note that, if
W and W ′ are two distinct connected components of G3, then the spanning trees
associated with W and W ′ are disjoint.

Now let us enumerate the different trees of size ` in G3. To begin, a node is
chosen as the root. Since there are at most qI4 nodes in G3, there are at most qI4

possible roots. Next, we construct the tree as we perform a depth-first traversal of
it. Nodes of the tree are visited one at a time. At each node u in the tree, either
a previously unvisited neighbor of u is chosen as the next node to be visited, or
the parent of u is chosen to be visited (at the root, the only option is to visit a
previously unvisited neighbor). Thus, at each node there are at most b9 ways to
choose the next node. Since each edge in the tree is traversed once in each direction,
and there are `−1 edges, the total number of different trees with any one root is
at most (b9)2(`−1)<b18`.

Any tree of size ` in G3 corresponds to an independent set of size ` in G1;
moreover, it corresponds to an independent set of ` critical nodes in G1. We can
bound the probability that all of the nodes in any particular independent subset
U of size ` in G1 are critical as follows. Let pC be the probability that more than
M=CT/I+kr(I+T)T/(I

√
logI) packets use edge g in τ after C candidate packets

390 TOM LEIGHTON, BRUCE MAGGS, ANDRÉA W. RICHA

to use g in τ have been assigned delays. Then

pC ≤
C∑

j=M+1

(
C

j

)(
T

I

)j (
1− T

I

)C−j
.

For a fixed deviation (in our case, for kr(I+T)T/(I
√

logI)) that does not depend on
C, the probability pC of exceeding this deviation is maximized when C is maximized
— i.e., when C = r(I +T), which makes M = r(T + I)T (1 + k/

√
logI)/I. Thus,

pC ≤ pr(I+T). Using the Chernoff-type bound as in the proof of Proposition 3.6,

with µ= r(I +T)T/I and γ = k/
√

logI, and k0 = k2/3, we have pC ≤ pr(I+T) =

Pr[S≥(1+γ)µ]≤e−γ2µ/3 =e−(k2r(I+T)T)/(3I logI)≤e−(k0 logI)≤e−(k0 lnI) =1/Ik0,
since T ≥ log2 I and r > 1. Thus the probability that the event for g and τ
becomes critical after C candidate packets to use g in τ have been assigned delays
is at most 1/Ik0 . Since the nodes in U are independent in G1, the corresponding
events are also independent. Hence the probability that all of the nodes in the
independent set are critical after all packets are assigned delays or put aside is at
most 1/Ik0`. Thus the probability that there exists a tree of size ` in G3 is at most
qI4b18`/Ik0` ≤ qI4−(k0−234)` (since there exists at most qI4b18` different trees of
size ` in G3 and b ≤ I13). Since q ≤ P, we can make this probability less than

1/Pβ′ , for `=logP and any fixed constant β′>0, by choosing k to be a sufficiently

large constant. Hence, with probability at least 1−1/Pβ′ , the size of the largest
spanning tree in G3 will be logP .

We can now bound the size of the largest connected component in G1. Since
(i) the largest connected component in G3 has at most ` nodes with probability

at least 1− 1/Pβ′ , (ii) each of these ` nodes may have b3 neighbors in G2, and
(iii) each node in G2 is either in G3 or is a neighbor of a node in G3, the largest
connected component in G2 contains at most b3` nodes with probability at least
1− 1/Pβ′ . As we argued before, the critical nodes in any connected component
of G1 are connected in G2. Thus, the maximum number of critical nodes in any
connected component of G1 is at most b3`. Since each of these nodes may have as
many as b endangered neighbors (and each endangered neighbor is adjacent to a
critical node), and since `= logP, the size of the largest connected component in
G1 is at most b4`≤I52 logP , with high probability.

Since I = logP in the scope of this lemma, the size of the largest connected
component in G1 is at most (logP)53, for k large enough, with probability at least

1−1/Pβ′ , for any constant β′>0. We still have to find a schedule for the packets not
in P . We now have a collection of independent subproblems to solve, one for each
component in the dependence graph. We can use Proposition 3.6 to find the initial
delays for these packets. Since each node in the dependence graph corresponds to

FINDING O(Congestion + Dilation) PACKET ROUTING SCHEDULES 391

an edge in the routing network, a component with x nodes in the dependence graph
corresponds to at most x, and possibly fewer, edges in the routing network.

We apply Proposition 3.6 to each of the independent subproblems. In the
original block, let rg be the relative congestion of edge g with respect to the packets
not in P in frames of size I or larger, and let rHg be the relative congestion of
edge g with respect to the packets in subproblem H in frames of size I or larger
(rg=

∑
H r

H
g). Let qH be the number of distinct edges associated with subproblem

H , for all H . Note that qH ≤I52`≤I52 logP=I53, since I=logP. After applying
Proposition 3.6 to a subproblem H , the relative congestion of any edge g with
respect to the packets in H in frames of size log2 I or larger, in between the first
and last I2 steps in the final schedule is at most rHg (1+k1/

√
logI), for some constant

k1>0, with probability at least 1−qH/Iξ≥1−1/(logP)ξ−53, for any constant ξ>0.
Since the routing subproblems are mutually independent and disjoint, if we

apply Proposition 3.6 logP/(log logP) times to each of the at most N ≤ P
subproblems (note that each packet appears in at most one subproblem), then
for any constant ξ > 53, and P large enough, with probability at least
1−N/(logP)(ξ−53)logP/(log logP) ≥ 1− 1/Pξ−54, the relative congestion of edge
g with respect to the packets not in P , in any frame of size log2 I or greater is at
most

∑
H r

H
g (1+k1/

√
logI)=rg(1+k1/

√
logI).

Applying Proposition 3.6 logP/(log logP) times for each subproblem takes
time O(

∑
H q

H(I3 +I2)(log2 I) logP/ log logP)=O(q(log4P)(log logP)), since I=
logP and q≥

∑
H q

H .
We now have schedules for the packets in P and for the packets not in P .

Fix any edge g traversed by some packet in the block and a T -frame τ , where
T ∈ [log2 I,2log2 I−1]. The total number of candidate packets in P to use edge g
in τ after the delays have been assigned is given by Cg . The number of packets
in P that traverse edge g in τ in the resulting schedule is at most CgT/I +
kr(I+T)T/(I

√
logI)≤ r(I+T)T (1+k/

√
logI)/I ≤ rT (1+(2k+1)/

√
logI), since

(I + T)/I ≤ (1 + 1/
√

logI), for I large enough, and Cg ≤ r(I + T). Hence the
relative congestion of any edge g in τ with respect to the packets in P is at most
r(1+(2k+1)/

√
logI).

Now we consider the relative congestion of the packets not in P . With proba-
bility at least 1−1/Pβ′−1/P(ξ−54), for any positive constants β′ and ξ, there exists
a constant k1 such that the number of packets not in P that traverse any edge g in
the new schedule is at most rgT (1+k1/

√
logI)≤rT (1+k1/

√
logI).

Combining the relative congestions for packets in P and not in P , we get that
the relative congestion of edge g in τ is at most 2r(1 + max(2k+ 1,k1)/

√
logI).

Choose σ= max(2k+1,k1)/
√

logI. Choose β such that 1/Pβ ≥ 1/Pβ′ +1/Pξ−54.
Hence, for any constant β > 0, there exist positive constants k and k1 such that

392 TOM LEIGHTON, BRUCE MAGGS, ANDRÉA W. RICHA

the relative congestion of edge g in τ is at most 2r(1+σ), for any edge g, for any
T -frame τ , for any T ∈ [log2 I,2log2 I−1], with probability at least 1−1/Pβ .

The number of time steps taken by the algorithm just described is
O(q(log logP+logP)(log3P)(log logP))=O(q(log4P)(log logP)).

Proposition 3.7.2. Let the relative congestion in any frame of size I or greater be

at most r in a block of size 2I3 +2I2−I, where 1≤ r≤ I and I= (loglogP)2. Let
q be the number of distinct edges traversed by the packets in this block. Then, for
any constant β>0,

1. there is an algorithm for assigning initial delays in the range [0, I] to the packets

so that in between the first and last I2 steps of the block, the relative congestion

in any frame of size log2 I or greater is at most r′, where r′ = 2r(1 +σ) and

σ=O(1)/
√

logI;

2. this algorithm runs in q(logP)(log logP)6(log log logP)O(1) time steps, with

probability at least 1−1/Pβ .

Proof. The first part of the proof of this proposition is identical to the part where
we assign delays to the packets in P in the proof of the Proposition 3.7.1 (we let
I=(loglogP)2 in that proof).

However, since I = (log logP)2, we need to make an additional pass assign-
ing delays to the packets in this proof, in order to reduce the component size in
the dependence graph to a polynomial in I. From there, we proceed by applying
Proposition 3.6 to each component separately, as we did in the proof of Proposi-
tion 3.7.1. In the first pass, we reduce the maximum component size in G1 from
qI4 to I52 logP (by taking `= logP, as in Proposition 3.7.1), with probability at

least 1− 1/Pβ′ , for any constant β′ > 0. In the second pass, we reduce the com-
ponent size from I52 logP down to I52 log logP ≤ I53 (by taking ` = loglogP in
the part of the proof of Proposition 3.7.1 where we assign delays to the packets
in P , and noting that the number of edges in any connected component is now at
most I52 logP). For any component, this step will succeed with probability at least

1−1/(I52 logP)β
′
, for any constant β′> 0. To make this probability as high as it

was in the case I=logP, if a pass fails for any component, we simply try to reduce
the component size again, up to logP/(log logP) times. Then with probability at

least 1−1/Pβ′ , for any constant β′>0, we have reduced the component size to at
most I53. Since (i) for each packet assigned a delay in these two passes, we have
to check whether the event for an edge g and a T -frame τ becomes critical, for all
edges g traversed by the packet, for all T -frames τ , for T ∈ [log2 I,2log2 I−1] (using
the procedure described in the last paragraph of Proposition 3.6), and since (ii) we
repeat the second pass O(logP/ log logP) times, the two passes take

O(q(I3 + I2)(log2 I)(logP)/(log logP)) ≤

FINDING O(Congestion + Dilation) PACKET ROUTING SCHEDULES 393

O(q(log logP)6 log2((log logP)2) logP/(log logP)) ≤

q(logP)(log logP)5(log log logP)O(1)

time steps.
The second pass adds some packets to the set P . Let P1 and P2 denote the

number of packets assigned delays in the first and second pass, respectively. Then
the relative congestion due to these packets will be at most

[(P1 +P2)T/I+2kr(I+T)T/(I
√

log I)]/T ≤ r(I+T)/I+2kr(I+T)/(I
√

log I) ≤

r[1 + T/I + 2k(I + T)/(I
√

log I)] ≤ r(1 + (4k + 1)/
√

log I),

since T < 2log2 I and 2log2 I/I ≤ 1/
√

logI. If the two passes fail to achieve the
desired relative congestion, we try again.

Now we apply Proposition 3.6 up to logP/(log log logP) times, assigning delays
to the packets not in P , verifying at the end of each application whether the
schedule obtained has relative congestion r(1+k1/

√
logI), for some constant k1 to

be specified later. Here we need to apply Proposition 3.6 up to logP/(log log logP)
times to each resulting component (rather than logP/(log logP) as in the proof of
Proposition 3.7.1) since the component size now is O(I53)=(log logP)O(1), and so
our bound on the failure probability for each component is only 1/(log logP)O(1)

(since the bound given by Proposition 3.6 is at best polynomially small in I and
I=(loglogP)2), rather than 1/(logP)O(1). The assignment of delays to the packets
not in P takes at most q(log logP)6(log log logP)O(1)(logP) time steps. For any
constant β′>0, there exists a constant k1>0 such that we obtain a feasible schedule
for these packets with relative congestion r(1+k1/

√
logI) with probability at least

1−1/Pβ′ .
We have schedules for the packets in P and for the packets not in P , with

relative congestions r(1+(4k+1)/
√

logI) and r(1+k1/
√

logI), respectively, with

probability at least 1−2/Pβ′ , for any constant β′ > 0. The two schedules can be
found in at most q(logP)(log logP)6(log log logP)O(1) time steps. When we merge
the two schedules, the resulting relative congestion may be as large as the sum of
the two relative congestions — that is, the resulting relative congestion may be
as large as 2r(1 + max(4k+ 1,k1)/

√
logI), with probability at least 1−1/Pβ , for

large enough positive constants k and k1, for any fixed β >0 (choose β′ such that

1/Pβ>2/Pβ′). Let σ=max(4k+1,k1)/
√

logI.

3.3. Applying exhaustive search

The remaining O(log∗(c+ d)) applications of Lemma 3.7 in [9] are replaced by
applications of the following proposition, which uses the same technique as Propo-

394 TOM LEIGHTON, BRUCE MAGGS, ANDRÉA W. RICHA

sitions 3.7.1 and 3.7.2, except that instead of using Proposition 3.6 for each compo-
nent of the subgraph induced by critical and endangered nodes in the dependence
graph, it uses the Lovász Local Lemma and exhaustive search to find the settings
of the delays for the packets. Proposition 3.7.3 does not allow a constant fac-
tor increase in the relative congestion of the refined schedule, which prevents a
2O(log∗(c+d)) blowup in the final relative congestion.

Proposition 3.7.3. Let the relative congestion in any frame of size I or greater be

at most r in a block of size 2I3+2I2−I, where 1≤r≤I and I≤(log log logP)O(1).
Let q be the number of distinct edges traversed by the packets in this block. Then,
for any constant β>0,

1. there is an algorithm for assigning initial delays in the range [0, I] to the

packets so that the relative congestion in any frame of size log2 I or greater

in between the first and last I2 steps in the resulting schedule is at most r′,
where r′=r(1+σ) and σ=O(1)/

√
logI;

2. this algorithm runs in q(logP)(log log logP)O(1)(log log log logP)O(1) time

steps, with probability at least 1−1/Pβ .

Proof. This proof uses the Lovász Local Lemma to show that an assignment of
initial delays satisfying the conditions of the proposition exists, as we will see below.

We first assign delays to some packets by making three passes through the
packets using the algorithm of Proposition 3.7.1 (for making the initial pass assign-

ing delays to the packets in P) in each pass. Let C(i)
g , 1≤ i≤ 3, be the number

of candidate packets to use edge g in τ that were assigned delays in the ith pass.
After the first pass, we have that (i) the number of packets assigned delays in this

pass that use edge g in the new schedule is at most C(1)
g T/I+kr(I+T)/(I

√
logI),

and (ii) with probability at least 1−1/Pβ′ , for any constant β′>0, the size of the
largest component in the dependency graph is I52 logP .

We need to make two more passes assigning delays to the packets, reducing
the size of the largest connected component first to I52(log logP), and then to
I52(log log logP) = (log log logP)O(1) (since I ≤ (log log logP)O(1)), by taking ` =
loglogP in the second pass and `=loglog logP in the third pass. If we fail to reduce
the component size as desired, the second pass is repeated up to logP/(log logP)
times, and the third pass is repeated up to logP/(log log logP) times. The number
of packets assigned delays in the second (resp., third) pass that traverse edge g in

the new schedule is at most C(2)
g T/I+kr(I+T)/(I

√
logI) (resp., C(3)

g T/I+kr(I+
T)/(I

√
logI)). As before, k is chosen large enough so that the failure probability

in each pass is at most 1/Pβ′ , for any constant β′>0.
In each pass, we assign a random delay to each packet and check whether

the event for any edge g traversed by this packet and any T -frame τ , where
T ∈ [log2 I,2log2 I − 1], becomes critical, as we did in Propositions 3.7.1–2. Thus

FINDING O(Congestion + Dilation) PACKET ROUTING SCHEDULES 395

each pass takes time O(q(I3+I2)(log2 I))=q(log log logP)O(1)(log log log logP)O(1).

For any constant β > 0, choose β′ such that 1/Pβ > 3/Pβ′ . Hence, since we may
repeat the second and third passes up to logP/(log logP) and logP/(log log logP),
respectively, we succeed in reducing the component size to (log log logP)O(1) in
q(logP)(log log logP)O(1)(log log log logP)O(1) time steps, with probability at least
1−1/Pβ .

We now use the Lovász Local Lemma to show that there exists a way of
completing the assignment of delays (i.e., to assign delays to the packets not in P)
so that the relative congestion in frames of size log2 I or greater in this block is at
most r(1+O(1)/

√
logI). We associate a bad event with each edge and each time

frame of size log2 I through 2log2 I−1. The bad event for an edge g and a particular
T -frame τ occurs when more than Mg=(r(I+T)−Pg)T/I+kr(I+T)T/(I

√
logI)

packets not in P use edge g in τ , where Pg is the number of packets in P that
traverse edge g during τ after the delays have been assigned to the packets in P
(note that there are at most r(T +I)−Pg candidate packets not in P to use edge
g in τ). As we argued in the proof of Proposition 3.7.1, the total number of bad
events involving any one edge is at most I4. We show that if each packet not in P
is assigned a delay chosen randomly, independently, and uniformly from the range
[0, I], then with nonzero probability no bad event occurs. In order to apply the
lemma, we must bound both the dependence of the bad events, and the probability
that any bad event occurs. The dependence b is at most I13, as argued before. For
any edge g and T -frame τ that contains g, where log2 I ≤ T ≤ (2 log2 I)− 1, the
probability pg that more than Mg packets not in P use g in τ , can be shown to
be at most 1/I14, for sufficiently large k, using exactly the same Chernoff-bound
argument that was used in Proposition 3.7.1. Thus, 4(maxg∈G{pg})b≤4/I<1 (for
I >4). Hence, since maxg∈G{pg} is an upper bound on the probability of any bad
event occurring, by the Lovász Local Lemma, there is some way of assigning delays
to the packets not in P so that no bad event occurs.

Since at most r(T + I) packets pass through the edge associated with any
critical node, and there are at most (I + 1) choices for the delay assigned to
each packet, the number of different possible assignments for any subproblem

containing (log log logP)O(1) critical nodes is at most (I+1)r(I+T)(log log logP)O(1)≤
I4I2(log log logP)O(1)

(since r < I and T < 2log2 I). For I < (log log logP)O(1) and
P larger that some constant, this quantity is smaller than (logP)γ , for any fixed
constant γ>0. Hence, we need to try out at most logγ P possible delay assignments.

After assigning delays to all of the packets, the number of packets that use an
edge g in any T -frame τ is at most

3∑
i=1

(
C

(i)
g T

I
+
kr(I + T)T
I
√

log I

)
+

(r(I + T)− Pg)T
I

+
kr(I + T)T
I
√

log I

396 TOM LEIGHTON, BRUCE MAGGS, ANDRÉA W. RICHA

≤ r(I + T)T
I

+
4kr(I + T)T
I
√

log I

with probability at least 1−1/Pβ , since each packet is assigned a delay exactly once,

and thus r(I+T)−Pg+C(1)
g +C(2)

g +C(3)
g ≤r(I+T). Thus the relative congestion

in any T -frame, for log2 I≤T <2log2 I, is at most(
r(I + T)

I

)
(1 +

4k√
log I

) = r

(
1 +

T

I

)
(1 +

4k√
log I

)

= r

(
1 +

(8k + 1)√
log I

)
= r(1 + σ),

by taking σ=(8k+1)/(I
√

logI), since 2 log2 I/I≤1/
√

logI, for I large enough.
We can bound the total number of time steps taken by the algorithm as

follows. The first three passes (including all repeated trials of the second and
third passes) take time q(logP)(log log logP)O(1)(log log log logP)O(1), with prob-
ability at least 1− 1/Pβ . After the third pass, we solve subproblems contain-
ing (log log logP)O(1) critical nodes exhaustively. For each subproblem, for each
of the at most logγ P possible assignment of delays to the packets in the sub-
problem, for each of the at most (I3 + I2) log2 I T -frames τ in the subproblem,
log2 I ≤ T < 2log2 I, and for every edge g in τ , we check whether more than
Mg packets traverse g during τ (using the procedure described in the proof of
Proposition 3.6). This takes time O(q(I3 + I2)(log2 I)(logγ P)), which is at most
q(log log logP)O(1)(log log log logP)O(1)(logγ P), for P large enough, for any fixed
γ > 0 (since I = (loglog logP)O(1)). In particular, for γ = 1, this quantity is
bounded by q(logP)(log log logP)O(1)(log log log logP)O(1). Hence the algorithm
runs in q(logP)(log log logP)O(1)(log log log logP)O(1) time steps, with probability
at least 1−1/Pβ , for any constant β>0.

3.4. Moving the block boundaries

Now we present the three replacement propositions for Lemma 3.9 of [9], which
bounds the relative congestion after we move the block boundaries (as in [9]). The
three propositions that follow are analogous to the three replacement propositions
— Propositions 3.7.1–3 — for Lemma 3.7 of [9]. The necessary changes in the
proof of Lemma 3.9 of [9], in places where the Lovász Local Lemma is used, are
also analogous to the changes made in the proof of Lemma 3.7 of [9], for the cases
I=logP , I=(log logP)2, and I=(loglog logP)O(1). Therefore, we omit the proofs
of Propositions 3.9.1–3.

FINDING O(Congestion + Dilation) PACKET ROUTING SCHEDULES 397

Suppose we have a block of size 2I3+2I2, obtained after the insertion of delays
into the schedule as described in Propositions 3.7.1, 3.7.2, or 3.7.3, according to
the current value of I. Then suppose we move the block boundaries as described
in [9]. Each Proposition 3.9.1–3 refers to a specific size of I. Note that in [9], the
steps between steps I3 and I3 + 2I2 in the block are called the “fuzzy region” of
the block. We assume that the relative congestion in any frame of size I or greater
in the block is at most r, where 1≤ r≤ I. Let q be the number of distinct edges
traversed by the packets in the block.

Proposition 3.9.1. For I=logP , for any constant β>0,

1. there is an algorithm for assigning delays in the range [0, I2] to the packets

such that in between steps I log3 I and I3 and in between steps I3 +3I2 and

2I3+3I2−I log3 I, the relative congestion in any frame of size log2 I or greater
is at most 2r(1+σ1), where σ1 =O(1)/

√
logI, and such that in between steps

I3 and I3+3I2, the relative congestion in any frame of size log2 I or greater is
at most 2r(1+σ2), where σ2 =O(1)/

√
logI;

2. this algorithm runs in O(q(logP)4(log logP)) time steps, with probability at

least 1−1/Pβ .

Proposition 3.9.2. For I=(log logP)2, for any constant β>0,

1. there is an algorithm for assigning delays in the range [0, I2] to the packets

such that in between steps I log3 I and I3 and in between steps I3 +3I2 and

2I3+3I2−I log3 I, the relative congestion in any frame of size log2 I or greater
is at most 2r(1+σ1), where σ1 =O(1)/

√
logI, and such that in between steps

I3 and I3+3I2, the relative congestion in any frame of size log2 I or greater is
at most 2r(1+σ2), where σ2 =O(1)/

√
logI;

2. this algorithm runs in q(logP)(log logP)6(log log logP)O(1) time steps, with

probability at least 1−1/Pβ .

Proposition 3.9.3. For I=(log log logP)O(1), for any constant β>0,

1. there is an algorithm for assigning delays in the range [0, I2] to the packets

such that in between steps I log3 I and I3 and in between steps I3 +3I2 and

2I3+3I2−I log3 I, the relative congestion in any frame of size log2 I or greater
is at most r(1+σ1), where σ1 =O(1)/

√
logI, and such that in between steps

I3 and I3+3I2, the relative congestion in any frame of size log2 I or greater is
at most r(1+σ2), where σ2 =O(1)/

√
logI;

2. this algorithm runs in q(logP)(log log logP)O(1)(log log log logP)O(1) time

steps, with probability at least 1−1/Pβ .

398 TOM LEIGHTON, BRUCE MAGGS, ANDRÉA W. RICHA

4. Running time

Theorem 4.1. For any constant δ > 0, the algorithm for finding an O(c+d)-steps

schedule of the packets takes O(m(c+d)(logP)4(log logP)) time steps overall, with

probability at least 1−1/Pδ.

Proof. For any constant β>0, we place an upper bound on the number of time steps
taken by the application of Proposition 3.2, followed by the applications of Propo-
sitions 3.7.1, 3.9.1, 3.7.2, and 3.9.2, then followed by the applications of Proposi-
tions 3.7.3 and 3.9.3. The application of Proposition 3.2 takes O(m(c+ d) logP)
time steps, with probability at least 1−1/Pβ . Each of the Propositions 3.7.1–3, and
each of the Propositions 3.9.1–3 dealt with a single block. For any I, partitioning
the schedule into disjoint blocks and moving the block boundaries as described in
[9] take O(P) time. Let nI be the number of blocks in the partition of the schedule
for any given I.

We place an upper bound on the number of time steps taken by the appli-
cations of Propositions 3.7.1–3 and 3.9.1–3 as follows. Assume the nI blocks in
the partition for I are numbered from 1 to nI . Note that

∑nI
i=1 qi = P, where qi

is the number of distinct edges traversed by the packets in block i in this parti-
tion, independent of I. Thus the applications of Proposition 3.7.1 and 3.9.1 take
O(P(logP)4(log logP)) steps; and the applications of Propositions 3.7.2 and 3.9.2
take P(logP)(log logP)6(log log logP)O(1) steps. For each partition of the schedule
for a given I ≤ (log log logP)O(1), we apply Propositions 3.7.3 and 3.9.3 to every
block i in this partition, 1≤ i≤ nI , taking overall time P(logP)(log log logP)O(1)

(log log log logP)O(1). Since we will repartition the schedule O(log∗(c+ d)) times
after we bring I down to (log log logP)O(1), the overall running time due to appli-
cations of Propositions 3.7.3 and 3.9.3 is

P(logP)(log log logP)O(1)(log log log logP)O(1) log∗(c+ d).

Choose δ > 0 such that 1/Pδ ≥ O(log∗(c+ d))/Pβ . Hence, the total number
of time steps taken by the algorithm is O(m(c+d)(logP)4(log logP)), for P large
enough, with probability at least 1−1/Pδ, for any constant δ>0 (Note that we use
the inequalities P≥c, P≥d, and P≤m(c+d)).

5. A parallel scheduling algorithm

At first glance, it seems as though the algorithm described in Section 3 is inherently
sequential. This is because the decision concerning whether or not to assign a delay

FINDING O(Congestion + Dilation) PACKET ROUTING SCHEDULES 399

to a packet is made sequentially. In particular, a packet is deferred (i.e., not assigned
a delay) if and only if the packet might be involved in an event — i.e., the packet
traverses an edge that corresponds to an event — that became critical because of
the delays assigned to prior packets.

In [1], Alon describes a parallel version of Beck’s algorithm which proceeds
by assigning values to all random variables (in this case delays to all packets) in
parallel, and then unassigning values to those variables that are involved in bad
events. The Alon approach does not work in this application because we cannot
afford the constant factor blow-up in relative congestion that would result from this
process.

Rather, we develop an alternative method for parallelizing the algorithm. The
key idea is to process the packets in a random order. At each step, all packets
that do not share an edge with an as-yet-unprocessed packet of higher priority are
processed in parallel.

To analyze the parallel running time of this algorithm, we first make a depen-
dency graph G′ with a node for every packet and an edge between two nodes if the
corresponding packets can be involved in the same event. Each edge is directed to-
wards the node corresponding to the packet of lesser priority. By Brent’s Theorem
[4], the parallel running time of the algorithm is then at most twice the length of
the longest directed path in G′.

Let D denote the maximum degree of G′. There are at most NDL paths
of length L in G′. The probability that any particular path of length L has all
of its edges directed in the same way is at most 2/L! (the factor of 2 appears
because there are two possible orientations for the edges). Hence, with probability
near 1, the longest directed path length in G′ is O(D+logN). This is because if
L≥k(D+logN), for some large constant k, then NDL · 2

L!�1.

Each packet can be involved in at most (2I3+2I2)(2I3 +I2) log2 I events, and
at most r(I +T) ≤ O(I) packets can be involved in the same event. Hence, the
degree D of G′ is at most O(I7 log2 I). By using the method of Proposition 3.2 as
a preprocessing phase, we can assume that c, d, and thus I, are all polylogarithmic
in P . Hence, the parallel algorithm runs in NC, as claimed.

6. Concluding remarks

O ur algorithm for packet scheduling can also be used to route messages that are
composed of sequences of packets. This is possible since our algorithm can easily
maintain the property that any two packets traveling along the same path to the
same destination always proceed in order.

The algorithms described in this paper are randomized, but they can be
derandomized using the method of conditional probabilities [17, 20].

400 TOM LEIGHTON, BRUCE MAGGS, ANDRÉA W. RICHA

References

[1] N. Alon: A parallel algorithmic version of the Local Lemma, Random Structures

and Algorithms, 2(4) (1991), 367–378.

[2] D. Angluin and L. G. Valiant: Fast probabilistic algorithms for hamiltonian

circuits and matchings, Journal of Computer and System Sciences, 18(2) (1979),

155–193.

[3] J. Beck: An algorithmic approach to the Lovász Local Lemma I, Random Structures

and Algorithms, 2(4) (1991), 343–365.

[4] R. P. Brent: The parallel evaluation of general arithmetic expressions, Journal of

the ACM, 21(2) (1974), 201–208.

[5] H. Chernoff: A measure of asymptotic efficiency for tests of a hypothesis based on

the sum of observations, Annals of Mathematical Statistics, 23 (1952), 493–507.

[6] P. Erdős and L. Lovász: Problems and results on 3-chromatic hypergraphs and

some related questions, in: Infinite and Finite Sets (A. Hajnal et al., eds.),

Volume 11 of Colloq. Math. Soc. J. Bolyai, pages 609–627, North Holland,

Amsterdam, The Netherlands, 1975.

[7] R. R. Koch, F. T. Leighton, B. M. Maggs, S. B. Rao, A. L. Rosenberg,

and E. J. Schwabe: Work-preserving emulations of fixed-connection networks,

Journal of the ACM, 44(1) (1997), 104–147.

[8] F. T. Leighton, B. M. Maggs, A. G. Ranade, and S. B. Rao: Randomized

routing and sorting on fixed-connection networks, Journal of Algorithms, 17(1)

(1994), 157–205.

[9] F. T. Leighton, B. M. Maggs, and S. B. Rao: Packet routing and job-shop

scheduling in O(congestion + dilation) steps, Combinatorica, 14(2) (1994), 167–

180.

[10] F. T. Leighton, B. M. Maggs, and A. W. Richa: Fast algorithms for finding

O(congestion + dilation) packet routing schedules, Technical Report CMU–CS–

96–152, School of Computer Science, Carnegie Mellon University, Pittsburgh,

PA, July 1996.

[11] B. M. Maggs and E. J. Schwabe: Real-time emulations of bounded-degree net-

works, Information Processing Letters, 1998. To appear.

[12] Y. Mansour and B. Patt-Shamir: Greedy packet scheduling on shortest paths,

Journal of Algorithms, 14 (1993), 449–65.

[13] F. Meyer auf der Heide and C. Scheideler: Routing with bounded buffers and

hot-potato routing in vertex-symmetric networks, in: Proceedings of the Third

European Symposium on Algorithms, pages 341–354, 1995.

[14] F. Meyer auf der Heide and B. Vöcking: A packet routing protocol for arbitrary

networks, in: Proceedings of the Twelfth Symposium on Theoretical Aspects of

Computer Science Volume 439 of Lecture Notes in Computer Science, pages

291–302. Springer–Verlag, Heidelberg, Germany, March 1995.

FINDING O(Congestion + Dilation) PACKET ROUTING SCHEDULES 401

[15] R. Ostrovsky and Y. Rabani: Universal O(congestion+dilation+log1+εN) local

control packet switching algorithms, in: Proceedings of the Twenty-Ninth Annual

ACM Symposium on Theory of Computing, pages 644–653, May 1997.

[16] Y. Rabani and É. Tardos: Distributed packet switching in arbitrary networks, in:

Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of

Computing, pages 366–375, May 1996.

[17] P. Raghavan: Probabilistic construction of deterministic algorithms: Approximate

packing integer programs, Journal of Computer and System Sciences, 37(4)

(1988), 130–143.

[18] C. Scheideler: Universal Routing Strategies for Interconnection Networks, Vol.

1390 of Lecture Notes in Computer Science, Springer–Verlag, Berlin, Germany,

1998.

[19] D. B. Shmoys, C. Stein, and J. Wein: Improved approximation algorithms for

shop scheduling problems, in: Proceedings of the Second Annual ACM–SIAM

Symposium on Discrete Algorithms, pages 148–157, January 1991.

[20] J. Spencer: Ten Lectures on the Probabilistic Method, SIAM, Philadelphia, PA,

1987.

[21] A. Srinivasan and C.-P. Teo: A constant-factor approximation algorithm for

packet routing, and balancing local vs. global criteria, in: Proceedings of the

Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 636–

643, May 1997.

Tom Leighton

Mathematics Department, and

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139, U.S.A.

ftl@math.mit.edu

Bruce Maggs

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213, U.S.A.

bmm@cs.cmu.edu

Andréa W. Richa

Department of Computer Science

and Engineering

Arizona State University

Tempe, AZ 85287, U.S.A.

aricha@asu.edu

mailto:ftl@math.mit.edu
mailto:bmm@cs.cmu.edu
mailto:aricha@asu.edu

	Heading
	1. Introduction
	1.1. Our results
	1.2. Related work
	1.3. Outline

	2. Preliminaries
	2.1. A pair of tools for later use

	3. An algorithm for constructing optimal schedules
	3.1. The first reduction in frame size
	3.2. A randomized algorithm to reduce the frame size
	3.3. Applying exhaustive search
	3.4. Moving the block boundaries

	4. Running time
	5. A parallel scheduling algorithm
	6. Concluding remarks
	References

