
The Coming-of-Age of Software Architecture Research

Mary Shaw
Institute for Software Research, International

Carnegie Mellon University
Pittsburgh PA 15213

1-412-268-2589
mary.shaw@cs.cmu.edu

Abstract
Over the past decade, software architecture research

has emerged as the principled study of the overall
structure of software systems, especially the relations
among subsystems and components. From its roots in
qualitative descriptions of useful system organizations,
software architecture has matured to encompass broad
explorations of notations, tools, and analysis techniques.
Whereas initially the research area interpreted software
practice, it now offers concrete guidance for complex
software design and development.

We can understand the evolution and prospects of
software architecture research by examining the research
paradigms used to establish its results. These are, for the
most part, the paradigms of software engineering. We
advance our fundamental understanding by posing
research questions of several kinds and applying
appropriate research techniques, which differ from one
type of problem to another, yield correspondingly different
kinds of results, and require different methods of
validation. Unfortunately, these paradigms are not
recognized explicitly and are often not carried out
correctly; indeed not all are consistently accepted as valid.

This retrospective on a decade-plus of software
architecture research examines the maturation of the
software architecture research area by tracing the types of
research questions and techniques used at various stages.
We will see how early qualitative results set the stage for
later precision, formality, and automation and how results
build up over time. This generates advice to the field and
projections about future impact.

Keywords: Software architecture, research paradigms

1. Introduction
Software architecture is a relatively young area within

software engineering. To assess its progress, maturity, and
prospects, I will examine the growth of this area against the
backdrop of normal growth and maturity in software
engineering, paying special attention to the way we design
and carry out research projects.

Redwine and Riddle [53] described the natural charac-
teristics of maturing software technology. I elaborate their
model by considering institutional progress as well. By
comparing some of the highlights of software architecture
to this model, I assess its progress toward maturity.

This maturity model also provides a framework for
examining software architecture research in more detail. I
examine the various kinds of research problems we investi-
gate and the approaches we use to do so. Again, this
provides a baseline for assessing the state of software
architecture research.

Understanding the software architecture area in this
context of normal progress suggests objectives and
opportunities for the future.

2. How Technologies Mature
Redwine and Riddle [53] reviewed a number of soft-

ware technologies to see how they develop and propagate.
They found that it typically takes 15-20 years for a
technology to be ready for popularization. They identify
six typical phases:

• Basic research. Investigate basic ideas and concepts,
put initial structure on the problem, frame critical
research questions.

• Concept formulation. Circulate ideas informally,
develop a research community, converge on a
compatible set of ideas, publish solutions to specific
subproblems.

• Development and extension. Make preliminary use of
the technology, clarify underlying ideas, generalize the
approach.



• Internal enhancement and exploration. Extend
approach to another domain, use technology for real
problems, stabilize technology, develop training
materials, show value in results.

• External enhancement and exploration. Similar to
internal, but involving a broader community of people
who weren’t developers, show substantial evidence of
value and applicability.

• Popularization. Develop production-quality, sup-
ported versions of the technology, commercialize and
market technology, expand user community
Redwine and Riddle presented timelines for several

software technologies as they progressed through these
phases. For abstract data types and information hiding,
one of the important precursors of software architecture,
they noted these transition points:

• formulation of “information hiding” [49] as the shift
from basic research to concept formation,

• abstract data type languages [36][64] as the shift from
concept formation to development and extension,

• major publications and frequent appearance of the
concept in new programming languages (e.g., CLU
[37]) as the shift to internal exploration, and

• propagation of abstract data types to other technolo-
gies such as the Affirm program verification system
[23] as the shift to external exploration.

Their study ended in 1984, so they did not have the op-
portunity to note the influence of abstract data types on
object-oriented programming techniques and on the incor-
poration of objects/classes in new programming
languages.

As technologies mature, their institutional provisions
for distributing results change. We begin with informal
discussions among colleagues and progress to products in
the marketplace. Along the way, we see preliminary results
of the first two phases in position papers, workshops, and
research conferences. As the ideas mature, results appear
in conferences and then journals; larger conferences set
up tracks featuring the technology, and eventually enough
results are appearing to justify topical conferences. Books
that synthesize multiple results help to move the technol-
ogy through the middle phases. University courses,
continuing education courses, and standards indicate the
beginning of popularization.

Abstract data types emerged in a much smaller com-
munity than today’s with somewhat different institutions.
Nevertheless, we can see some of the institutional shifts.
An informal group of researchers working on aspects of
abstract data types met regularly once or twice a year in
the mid to late 1970’s in a format that resembles today’s
research workshops. SIGPlan Notices provided a forum

similar to today’s research workshop proceedings together
with web-based distribution of reports [35][65]. Parnas led
a sustained research program that began with testing
information hiding ideas on small examples in the early
1970’s [49] and culminated in a large-scale demonstration
of applying the ideas to clean specification of the A7E
avionics in the mid-1980s [50]. In the mid-1970s, the
Strawman requirements for the Ada programming language
design [15] clearly appealed to ideas from abstract data
types. Abstract data type ideas were incorporated in a
radical revision of the undergraduate data structures
course that was classroom tested in the late 1970s and
disseminated in a textbook [66]. The abstract data type
research results did not enter widespread use directly;
rather, they merged with inheritance results into object-
oriented design and implementation, influencing the
class/package constructs of object-oriented programming
languages. The verification aspects of abstract data types
have been slower to enter practice.

3. Maturation of software architecture
Software architecture is the principled study of the

overall structure of software systems, especially the rela-
tions among subsystems and components. From its roots
in qualitative descriptions of useful system organizations,
software architecture has matured to encompass broad ex-
plorations of notations, tools, and analysis techniques.
Whereas initially the research area interpreted software
practice, it now offers concrete guidance for complex
software design and development.

Software architecture research overlaps and interacts
with work on software families, component-based reuse,
software design, specific classes of components (e.g.,
COM), product line, and program analysis. It is not pro-
ductive to attempt rigid separation among these areas;
research can certainly contribute to more than one.

One way to see the growth of the field is to examine
the rate at which earlier results serve as building blocks for
subsequent results. A rough estimate is provided by cita-
tion counts for papers with “software architecture” in the
title. For a sample of 2000 citations in the ResearchIndex
database [47], virtually all of the cited papers were pub-
lished in 1990 or later, and there were sharp increases in
the numbers of citations for papers published after 1991
and again for papers published after 1994. The most
widely-cited two dozen of these entries were published
between 1990 and 1998. They include four books
([6][10][59][63], 1995 to 1998), eight papers dealing with
architectures for particular domains ([11][12][13][24][32]
[34][38][40], 1990 to 1995), seven papers presenting sur-
veys or models for the field ([17][21][20][46][51] [57][58],
1992 to 1995), three formalizations ([1][2][45], 1993 to 1996),



and one paper each on an architecture description
language [56] and reverse engineering [67].
Unsurprisingly, they generally represent the first three
phases of development. Imperfect though this estimate
may be, it still indicates very substantial growth since 1995
and a balance between exploration of specific problems
and generalization and model development.

Here are some of the highlights of the field’s devel-
opment. The chronology is not as linear as the Red-
wine/Riddle model might suggest: different aspects of the
field evolve at different rates; transitions between phases
do not happen instantly; and publication dates lag the
actual work by different amounts. Nevertheless, overall
progress corresponds fairly well to their model.

3.1 Basic research
As long as complex software systems have been

developed, their designers have described their structures
with box-and-line diagrams and informal explanations.
Good designers recognized stylistic commonalities among
these structures and exploited the styles in ad hoc ways.
These structures were sometimes referred to as architec-
tures, but the knowledge of common styles was not
systematically organized or taught.

In the late 1980s people began to explore the advan-
tages of deliberately-designed specialized software struc-
tures for specific problems. Some of this work addressed
software system structures for particular product lines or
application domains, including oscilloscopes [14] and mis-
sile control [24][46]. Other work organized the informal
knowledge about common software structures, or archi-
tectural styles, that can be used in a variety of problem
domains. This work cataloged existing systems to identify
common architectural styles such as pipe-filter, repository,
implicit invocation, and cooperating processes
[3][5][48][54]. These complementary lines of research led to
models for explaining the architectural styles and to two
widely cited papers in 1992 and 1993 that established the
structure of the field [21][51].

3.2 Concept formulation
The basic models were elaborated and explored:

through architecture description languages, early
formalization, and classification. Most of this work took
place in the mid-1990s, and it continues to the present as
new ideas take shape.

Architecture description languages explored a variety
of aspects of architecture. These languages included
Aesop [18] (exploiting specific properties of styles), C2
[42] (exploring power of a particular event-based style),
Darwin [41] (design and specification of dynamic
distributed systems), Meta-H [7] (real-time avionics

control), Rapide [39] (simulation and analysis of dynamic
behavior expressed in posets), UniCon [56] (extensible set
of connectors and styles, compilation to code), and Wright
[3] (component interaction).

Formalizations developed in parallel with the language
development. Sometimes this was integral to the language
(Darwin, Rapide, Wright), and in other cases it was more
independent, as the formalization of style [1][2] or formal
analysis of inconsistency in a specific architectural model
[60]. Recognition that multiple views must be reconciled in
architectural analysis [31] helped to frame the requirements
for formalism.

The early narrative catalogs of styles were expanded
in taxonomies of styles [55] and of the elements that
support those styles [30]. The common forms were
cataloged and explained as patterns [10]. An early book
[59] on these ideas set the stage for further development.

3.3 Development and extension
More recently, focus has been on unifying and

refining initial results. The ACME architectural interchange
language began with the goal of providing a framework to
move information between architecture description lan-
guages [19]; it has grown to integrate other design,
analysis and development tools.

Refinement of the taxonomies of architectural elements
[44] and languages [43] has also continued.

The institutions of the area are also maturing. The
Transactions on Software Engineering had a special issue
on software architecture in 1995 [20]. The special “road-
map” track at the ICSE 2000 conference included software
architecture [22] among its topics to survey. The current
ICSE has four sessions on architectural topics, and of the
22 affiliated tutorials, 8 are related to UML and 6 others
have clear architectural elements. A standalone
conference, the Working IEEE/IFIP Conference on
Software Architecture, will be held in August 2000, and
one of the sponsors of that conference is a new IFIP
working group.

3.4 Internal enhancement and exploration
Architectural styles are commonly used informally as

design guides. The explicit attention to this aspect of
design is increasing, and as a result we are gaining
experience.

A few formal analyses of real system designs have
been done as well. For example, architectural specification
of the Higher Level Architecture for Distributed Simulation
[4] was able to identify inconsistencies before
implementation, thereby saving extensive redesign.

Books on the application of the research to practice
[6][26] set the stage for external exploration.



3.5 External enhancement and exploration
Two unifications have matured enough to be useful

outside their developer groups.
UML[8], under the leadership of Rational, has inte-

grated a number of design notations and is developing a
method for applying them systematically. The connection
to concrete analysis and to code is not yet fleshed out, but
the notations themselves have gained a wide audience.

The SEI’s Architecture Tradeoff Analysis Method
[29] supports analysis of the interaction among attributes
as well as the attributes themselves.

3.6 Popularization
One of the hallmarks of a production-ready technol-

ogy is good standards. Standards for particular component
families (e.g., COM, CORBA) and interfaces (e.g., XML)
exist, but they reflect component reuse interests as much
as architectural interests. A recent IEEE standard [27]
attempts to codify the current best practices and insights
of both the systems and software engineering communities
and make provisions for evolution.

3.7 Current status
It is fair to say that software architecture is well into

the phase of development and extension, and that
enhancement and exploration are beginning in earnest.
Ideas and some tools are being exploited in practice, but
the technologies are not yet mature. This is consistent
with the shorter end of a 15-20 year maturity cycle.
Research remains to be done, especially in the area of
showing the range of utility of various styles, formalisms,
design techniques, and tools. I turn now to a more detailed
discussion of the research process itself.

4. Software engineering research paradigms
Software engineering research is often motivated by

problems that arise in the production and use of real-world
software. Such problems are often complex, and it's com-
mon to identify a research setting that is much simpler than
the real problem but still captures some essential aspect.
We can identify some common forms for these research
settings, from narrative characterization of phenomena to
rigorous analytic models. Researchers have a repertoire of
approaches and methods; these yield a variety of research
products, including system prototypes, procedural tech-
niques, and models of several degrees of rigor.

4.1 Research settings
Software engineering research addresses several

particular classes of problems. Polya [52] distinguished
"problems to find" from "problems to prove", both in form

and in the techniques used to obtain solutions. Similarly,
Jackson distinguishes classes of software problems and
develops a theory of "problem frames" to classify, analyze,
and structure these problems [28]. Building on Shaw and
Garlan’s model of progressive codification [58] I make
similar distinctions among different types research
problems.

Technical ideas often begin as qualitative descriptions
of problems or practice and gradually become more precise
– and more powerful–as practical and formal knowledge
grow in tandem. Thus, as some aspect of software
development comes to be better understood, more
powerful specification mechanisms become viable, and this
in turn enables more powerful technology. Each of these
stages of codification relies on a different kind of
understanding and different approaches to the research.

General classes of research setting, the kinds of
questions posed by each, and examples from abstract data
types include:

Research
Setting

Sample Questions Examples from
abstract data types

Feasibility Is there an X, and
what is it? Is it possi-
ble to accomplish X
at all?

Is it possible to describe
the relation among com-
ponents of a software
system [16]?

Charac-
terization

What are the impor-
tant characteristics of
X? What is X like?
What, exactly, do we
mean by X? What are
the varieties of X, and
how are they related?

What is the important
information to share and
to hide about a
component [49]?

Method/-
Means

How can we accom-
plish X? What is a
better way to accom-
plish X? How can I
automate doing X?

How can we incorporate
abstract data types in a
programming language
[37][64]?

General-
ization

Is X always true of
Y? Given X, what
will Y be?

What is a formal relation
between the specifi-
cation of an abstract
data type and its imple-
mentation [25]?

Selection How do I decide
between X and Y?

What organization
should I choose for the
user interface compo-
nent of a system [33]?

Examples from software architecture include:
• Feasibility. Early architecture description languages

showed that it is possible to specify component
interactions [3] or to compile from a specification,
including generation of glue code for connectors [56].



• Characterization. The early models for the structure
of the field [21][51] characterized both the phenomena
and the terms in which they could be explained.

• Method/means. Many of the papers that investigate
architectures for particular classes of systems
[14][24][50] are finding ways, and improving ways, to
design and develop those systems.

• Generalization. Taxonomies of elements and of styles
[43][44][55][30] built on and generalized the early
characterizations. Patterns identify the conceptual
units that are regularly used in design [10].

• Selection. Decision support for choosing a system
structure [33]. The Architecture Tradeoff Analysis
Method [29] helps with selection by supporting
analysis of the interaction among attributes.

4.2 Research approaches, methods, and
products

Software engineering researchers approach problems
in a variety of ways. I distinguish them by the tangible
results of the research project.

Research
Product

Research Approach or
Method

Examples

Qualita-
tive or
descriptiv
e model

Organize & report interesting
observations about the
world. Create & defend gen-
eralizations from real exam-
ples. Structure a problem
area; formulate the right
questions. Do a careful
analysis of a system or its
development.

Early architec-
tural models
[21][51], archi-
tectural
patterns[10],

Technique Invent new ways to do some
tasks, including procedures
and implementation tech-
niques. Develop a technique
to choose among alternatives

Product line and
domain-specific
software archi-
tectures [14]
[24], UML to
support object-
oriented
design[8]

System Embody result in a system,
using the system develop-
ment as both source of
insight and carrier of results

Architecture
description lan-
guages, espe-
cially ACME

Empirical
predictive
model

Develop predictive models
from observed data

Analytic
model

Develop structural (quantita-
tive or symbolic) models that
permit formal analysis

HLA specifica-
tion, COM in-
consistency
analysis

4.3 Validation techniques
Results alone do not suffice. Although this step is of-

ten neglected, the results must be validated in some way to
show that they satisfy the requirement posed by the re-
search setting. Depending on the way the solution is cre-
ated and validated, we may have more or less confidence
in its correctness, adequacy, or generality. As ideas
mature, more rigor and detailed analysis is required to
advance our knowledge.

When describing a result, it is helpful to be explicit
about what degree of precision and rigor it purports to
achieve. Indeed, Brooks [9] proposes recognizing three
kinds of results, with individual criteria for quality:

• Findings. well-established scientific truths – judged
by truthfulness and rigor

• Observations. reports on actual phenomena – judged
by interestingness

• Rules-of-thumb . generalizations, signed by an author
(but perhaps not fully supported by data) – judged by
usefulness

with freshness as criterion for all.
Some argue for a narrower standard that would require

quantitative data on experimental results for most research
[61][62][68]. I take a more nuanced position, that different
types of results have value, and that more rigorous results
emerge only over time, either through cumulative evidence
or by building rigorous experiments on a base of more
informal experience. In other words, as engineers we do the
best we can with the available information, but in doing so
we must consider carefully how much to trust each result.
Researchers do, of course, have an obligation to explain
clearly how and to what extent their results support their
hypotheses and solve the problems that they claim to
solve – that is, to provide validation of their results.

Good validation entails not only showing that the
specific product of the research satisfies the idealized
problem of the research setting, but also that the result
helps to solve the original motivating problem. Even in
papers that validate the result against the research setting,
this is often omitted. As in most of software engineering,
excellent examples are rare and inadequate discussion is
altogether too common.

Formal research often provides verification of its
results; Sullivan’s formal analysis of an inconsistency in
the COM specification [60] not only provides a good
example of verification, but also of carrying the result back
to the original problems.

As noted above, early architecture description lan-
guages showed that it is possible to specify component in-
teractions [3] or to compile from a specification, including
generation of glue code for connectors [56]. To the extent



that these projects addressed sheer feasibility questions,
the implementation of a working system constitutes
validation.

The early models for the structure of the field [21][51]
were originally supported by persuasion. As time has
passed and those models have been built upon and
refined, the cumulative validation includes experience.

Some of the techniques that have been used
convincingly for validating one or another kind of software
engineering research result are

Technique Character of validation
Persuasion

Technique
Design
Example

I have thought hard about this, and I believe
that…

…if you do it the following way, then…
…a system constructed like this would…
…walking through this example shows

 how my idea works
Implementation

System
Technique

Here is a prototype of a system that…
…exists in code or other concrete form
…is represented as a set of procedures

Evaluation

Descriptive
  model
Qualitative
  model
Empirical
  quantitative
  model

Given these criteria, here’s how an object
rates…

…in a comparison of many objects

…by making subjective judgments
against a checklist

…by counting or measuring something

Analysis
Analytic
  formal
  model
Empirical
  predictive
  model

Given the facts, these consequences…
…are rigorous, usually symbolic, in

 the form of derivation and proof

are predicted by the model in a controlled
situation (usually with statistical
analysis)

Experience

Qualitative
  or desc-
  riptive
  model
Decision
    criteria
Empirical
    predictive
    model

I evaluate these results based on my experi-
ence and observations about the use of the
result in actual practice and report my con-
clusions in the form of

…prose narrative

…comparison of systems in actual use

…data on use in practice, usually with
 statistical analysis

Brooks’ “observations” and “rules of thumb”
correspond well to qualitative or descriptive models.

Two kinds of inadequate arguments appear entirely
too often in the software engineering literature. One sets
out to improve current practice, proposes a new technique,
implements a tool to support the technique, and fails to
collect any evidence comparing the new technique and
tool to the practice it purports to improve. The second
proposes a new technique, applies it to a toy example, and
claims a contribution; this form is particularly unsatisfac-
tory when the example is only tenuously related to a
practical problem.

4.4 Selecting a research strategy
The research strategy for a software engineering

problem identifies a research setting that addresses a fun-
damental issue in the problem and a matching approach
and validation technique. Different approaches are appro-
priate for different settings, and similarly different valida-
tion techniques are appropriate for different types of
results. Judicious selection of compatible settings, ap-
proaches, research products, and validation techniques is
a critical part of designing a research project.

For example, if there was at the outset a serious ques-
tion about whether something could be achieved at all,
simply exhibiting an implementation is validation enough.
However, if the question is how to improve on current
practice, the same implementation would probably be
completely unsatisfactory as the sole evidence. In other
words, “Look, it works!” is sufficient proof only if the
original question was whether it could be done at all.

As ideas mature into practical technologies, the char-
acter of the open questions changes. Whereas clear
articulation of issues may be a significant contribution at
the outset, the questions as a technology enters practice
may involve formal analysis and evaluation of
effectiveness relative to other technologies. Since the
essential questions change, so will the idealized research
settings, the most suitable approaches and research
products, and the appropriate validation techniques.

I offer these observations about research techniques
and strategies in the sense of Brooks’ rules of thumb.
They are open to refinement, and their usefulness must be
judged by whether they guide researchers to more careful
design of their projects and their reports of results.

5. What Next?
We see that software architecture is reaching the

point of growing from its adolescence in research
laboratories to the responsibilities of maturity. This brings
with it additional responsibility to show not just that ideas



are promising (a sufficient grounds to continue research)
but also that they are effective (a necessary grounds to
move into practice).

As a result, software architects must not be content
with simply doing more research in the style of the past
decade. Certainly there are new ideas yet to be explored in
that form, but we must also attend to making existing
results more robust, more rigorously understood, and more
ready to move into application.

There is a lesson here for all of software engineering
as well. Notwithstanding over 30 years of existence, soft-
ware engineering does not yet have a widely-recognized
and widely-appreciated set of research paradigms in the
way that other parts of computer science do. That is, we
don’t recognize what our research strategies are and how
they establish their results. Poor external understanding
leads to lack of appreciation and respect. Poor internal
understanding leads to poor execution, especially of vali-
dation, and poor appreciation of how much to expect from
a project or result. There may be also be secondary effects
on the way we choose what problems to work on at all.

So there is here a challenge to the whole of software
engineering to think through our research models more
carefully, to learn how to determine how much trust should
be put in our results, and to take the effort to validate the
work of both individual research papers and of long-term
projects.

6. Acknowledgments
I appreciate the patience of my colleagues in the

Institute for Software Research International at Carnegie
Mellon in helping me work through these ideas, especially
David .Garlan and the students in the spring 2000 course in
which I started serious exploration of the research para-
digms of software engineering. I appreciate David Notkin’s
evening open mike sessions at the FSE conference and his
willingness to let me raise related questions repeatedly. I
especially appreciate the invitation to present a keynote
talk and paper at ICSE 2000, which presents an ideal forum
in which to raise these issues for the software engineering
community generally as well as the software architecture
community.

7. References
[1] Gregory Abowd, Robert Allen, David Garlan. Using Style

to Understand Descriptions of Software Architecture, Proc.
1st ACM SIGSOFT Symposium on the Foundations of
Software Engineering, December 1993

[2] Gregory Abowd, Robert Allen, and David Garlan.
Formalizing style to understand descriptions of software

architecture. ACM Tr on Software Engineering and
Methodology, 1995.

[3] Robert Allen and David Garlan. Formalizing architectural
connection. Proc 16th International Conference on Software
Engineering, May 1994, pp. 71-80.

[4] Robert Allen, David Garlan, and James Ivers. Formal
modeling and analysis of the HLA component integration
standard. Proc 6th Intl Symposium on the Foundations of
Software Engineering, FSE-6, November 1998.

[5] Gregory Andrews. Paradigms for process interaction in
distributed programs. ACM Computing Surveys , vol 23 no
1, March 1991, pp. 49-90.

[6] Len Bass, Paul Clements, and Rick Kazman. Software
Architecture in Practice. Addison-Wesley, 1998

[7] P. Blinn and S. Vestal. Formal real-time architecture
specification and analysis. 10th IEEE Workshop on Real-
Time Operating Systems and Software, May 1993.

[8] Grady Booch. UML Users Guide. Addison Wesley,
Chicago, Il, 1998.

[9] Frederick P. Brooks, Jr. Grasping Reality Through Illusion -
- Interactive Graphics Serving Science. Proc. ACM SIGCHI
Human Factors in Computer Systems Conference, May
1988, pp. 1-11.

[10] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture - A System
of Patterns. Wiley and Sons, 1996

[11] B. Chapman, P. Mehrotra,, J. Van Rosendale, and H. Zima.
A software architecture for multidisciplinary applications:
Integrating task and data parallelism. Tech. Rep. 94-18,
ICASE, NASA Langley Research Center, Hampton, VA,
Mar. 1994.

[12] G. Chiola: GreatSPN 1.5 Software Architecture; Proc. 5th
Int. Conf. on Modelling Techniques and Tools for Computer
Performance Evaluation, Torino, 13-15 Feb. 1991.

[13] J. Cremer, J. Kearney, Y. Papelis, and R. Romano. The
software architecture for scenario control in the Iowa driving
simulator. Proc Conference on Computer Generated Forces
and Behavioral Representation

[14] Norman Delisle and David Garlan. Formally specifying
electronic instruments. Proc. Fifth International Workshop
on Software Specification and Design, May 1989.

[15] US Department of Defense. Strawman Requirements for
Higher Order Programming Languages., 1975.

[16] Frank DeRemer and Hans H. Kron. Programming-in the -
Large Versus Programming-in-the-Small. IEEE Tr on
Software Engineering, Vol. SE-2, No. 2, June 1976, pp. 80-
86.

[17] David Garlan. Research direction in software architecture.
ACM Computing Surveys , vol 27 no 2, 1995, pp. :257-261.



[18] David Garlan, Robert Allen, and John Ockerbloom.
Exploiting style in architectural design environments. Proc
SIGSOFT ’94: 2nd ACM SIGSOFT Symposium on the
Foundations of Software Engineering, December 1994, pp.
170-185.

[19] David Garlan, Robert Monroe, and David Wile. Acme: An
architecture description interchange language. Proc
CASCON ’97, November 1997, pp.169-183.

[20] David Garlan and Dewayne Perry. Introduction to the
Special Issue on Software Architecture, IEEE Tr on
Software Engineering, vol 21 no 4, April 1995, pp 269-274.

[21] David Garlan and Mary Shaw. An introduction to software
architecture. In Advances in Software Engineering and
Knowledge Engineering, volume 1. World Scientific
Publishing Co., 1993.

[22] David Garlan. Software architecture: a roadmap. The Future
of Software Engineering 2000, Proceedings 22nd
International Conference on Software Engineering, ACM
Press 2000

[23] S.L. Gerhart, D.R. Musser, D.H. Thompson, D.A. Baker,
R.L. Bates, R.W. Erickson, R.L. London, D.G. Taylor and
D.S. Wile. An Overview of AFFIRM: A Specification and
Verification System. Information Processing 80, S. H.
Lavington (Ed.), October, 1980, pp. 343-348.

[24] Mark Goodwin and Marty Kushner, Domain Analysis for
the Avionics Domain Architecture Generation Environment
of Domain Specific Software Architecture. ADAGE-IBM-
92-11.

[25] C.A.R. Hoare. Proofs of Correctness of Data
Representations. Acta Informatica, Vol. 1, 1972, pp. 271-
281.

[26] C. Hofmeister, R. Nord, and D. Soni. Applied software
architecture. Addison-Wesley, 1999

[27] IEEE-Std-1471-2000, Recommended Practice for Architec-
tural Description of Software-Intensive Systems. IEEE,
2000.

[28] Michael Jackson. Problem Frames: Analyzing and
structuring software development problems. Addison-
Wesley, 2001.

[29] R. Kazman, M. Barbacci, M. Klein, S.J. Carrière,
Experience with Performing Architecture Tradeoff Analysis,
Proc ICSE ‘99, May 1999, 54-63.

[30] R. Kazman, P. Clements, L. Bass, and G. Abowd..
Classifying Architectural Elements as a Foundation for
Mechanism Matching, Proc. COMPSAC ’97 International
Computer Software and Applications Conference, August
1997, pp. 1417.

[31] P. Kruchten. The 4+1 View Model of Software
Architecture. IEEE Software (Nov. 1995): 42-50.

[32] S. Kumar and E. H. Spafford. A software architecture to
support misuse intrusion detection. Proc 18th National
Information Security Conference, 1995, pp 194-204.

[33] Thomas G. Lane. Studying software architecture through
design spaces and rules. Technical Report CMU/SEI-90-TR-
18 ESD-90-TR-219, Carnegie Mellon University, November
1990.

[34] W.H. Leung, T.J. Baumgartner, Y.H. Hwang, M.J. Morgan,
and S.C. Tu. A Software Architecture for Workstations
Supporting Multimedia Conferencing in Packet Switching
Networks. IEEE Journal on Selected Areas in
Communications, vol.8, no.3, April 1990, pp.380-390.

[35] B. Liskov and S. Zilles. Programming with Abstract Data
Types. SIGPLAN Notices, April 1974.

[36] B. Liskov and S. Zilles. Specification techniques for Data
Abstractions. IEEE Tr on Software Engineering, Vol. SE-1,
No. 1, March 1975, pp. 7-19.

[37] B. Liskov et al.: CLU Reference Manual, Springer-Verlag,
1981, 190p.

[38] C. Locke. Software architecture for hard real-time
applications: Cyclic executives vs. fixed priority executives.
Journal of Real-Time Systems, vol 4 no 1, March 1992, pp.
37-53.

[39] D.C. Luckham, L.M. Augustin, J.J. Kenny, J. Veera, D.
Bryan, W. Mann. Specification and analysis of system
architecture using Rapide. IEEE Tr on Software Engineering
vol 21 no 4, April 1995, pp 336-355.

[40] Michael R. Macedonia, Michael J. Zyda, David R. Pratt,
Paul T. Barham, and Steven Zeswitz, NPSNET: A Network
Software Architecture for Large Scale Virtual Environments.
Presence, vol. 3, no. 4. Fall 1994.

[41] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying
distributed software architectures. Proc 5th European
Software Engineering Conference, ESEC ’95, September
1995

[42] N. Medvidovic, P. Oreizy, J.E. Robbins, R.N. Taylor.
Using object-oriented typing to support architectural design
in the C2 style. Proc 1st Working IFIP Conference on
Software Architecture, WICSA1, February 1999.

[43] N. Medvidovic and R.N. Taylor. A Framework for
Classifying and Comparing Architecture Description
Languages. Proc 6th European Software Engineering
Conference, Lecture Notes in Computer Science 1301, pages
60--76, September 1997.

[44] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a
taxonomy of software connectors. Proc. International
Conference on Software Engineering, 2000.

[45] D. Le Metayer. Software Architecture Styles as Graph
Grammers. Proc 4th ACM SIGSOFT Symposium on the



Foundations of Software Engineering, November 1996, pp
15--23.

[46] E. Mettala and M. Graham (eds.), The Domain-Specific
Software Architecture Program, Technical Report CMU/SEI-
92-SR-9, Software Engineering Institute, Carnegie Mellon
University, 1992.

[47] NEC. ResearchIndex: The NECI Scientific Literature Digital
Library, http://citeseer.nj.nec.com/cs

[48] H. Penny Nii. Blackboard Systems. AI Magazine 7(3):38-53
and 7(4):82-107.

[49] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM, vol.
15, no. 12, December 1972, pp. 1053-1058.

[50] D.L. Parnas, P.C. Clements, and D.M. Weiss. The Modular
Structure of Complex Systems. IEEE Tr on Software
Engineering, Vol. SE-11, No. 3, March 1985, pp. 259-266.

[51] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture. ACM SIGSOFT Software Engineering
Notes, 17:pp. 40-52, October 1992.

[52] George Polya. How to Solve It. Princeton University Press,
reissue edition 1971.

[53] Samuel Redwine and William Riddle. Software technology
maturation. Proc 8th International Conference on Software
Engineering, May 1985, pp. 189-200..

[54] Mary Shaw. Toward Higher-Level Abstractions for
Software Systems. Proc. Tercer Simposio Internacional del
Conocimiento y su Ingerieria, October 1988 (printed by
Rank Xerox) (invited), pp.55-61. Revised as Larger-Scale
Systems Require Higher-Level Abstractions, Proc. 5th Int'l
Workshop on Software Specification and Design, Pittsburgh,
May 1989, pp.143-146.

[55] Mary Shaw and Paul. Clements. A Field Guide to
Boxology: Preliminary Classication of Architectural Styles
for Software Systems. COMPSAC ’97 International
Computer Software and Applications Conference, August
1997, pp 6-13,

[56] M. Shaw, R. DeLine, V. Klein, T.L. Ross, D.M. Young, G.
Zelesnik. Abstractions for Software Architecture and Tools
to Support Them. IEEE Tr on Software Engineering, Vol.
21, No 4, April 95.

[57] Mary Shaw and David Garlan. Characteristics of Higher-
level Languages for Software Architecture. Technical Report

CMU-CS-94-210. Also appears as CMU/SEI-94-TR-23,
ESC-TR-94-023.

[58] Mary Shaw and David Garlan. Formulations and
Formalisms in Software Architecture. Jan van Leeuwen, ed.,
Computer Science Today: Recent Trends and Developments ,
Lecture Notes in Computer Science, Volume 1000, pp. 307-
323, Springer-Verlag, 1995.

[59] Mary Shaw and David Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall,
1996.

[60] Kevin Sullivan, M. Marchukov and D. Socha. Analysis of a
conflict between interface negotiation and aggregation in
Microsoft's component object model. IEEE Tr on Software
Engineering, July/August, 1999.

[61] W. F. Tichy, P. Lukowicz, L. Prechelt, and E. A. Heinz.
Experimental evaluation in computer science: A quantitative
study . J. Systems Software Vol. 28, No. 1, 1995, pp. 9-18.

[62] Walter F. Tichy. Should computer scientists experiment
more? 16 reasons to avoid experimentation. IEEE Computer,
Vol. 31, No. 5, May 1998.

[63] Kim Walden and Jean-Marc Nerson. Seamless Object-
Oriented Software Architecture - Analysis and Design of
Reliable Systems. Prentice Hall, 1995.

[64] W. A. Wulf and R. L. London and M. Shaw. An
introduction to the construction and verification of Alphard
programs. IEEE Tr on Software Engineering, Vol. SE-2, No.
4, December 1976, pp. 253-265.

[65] W. A. Wulf and M. Shaw: Global variables considered
harmful, SIGPLAN Notices, vol. 8 no 2 Feb. 1973, pp 28-
34.

[66] Wm. A. Wulf, Mary Shaw, Paul N. Hilfinger, and Lawrence
Flon, Fundamental Structures of Computer Science
Addison-Wesley, 1981

[67] A.S. Yeh, D. R. Harris, and M. P. Chase. Manipulating
recovered software architecture views. Proc International
Conference on Software Engineering, 1997, pp 184--194.

[68] M. Zelkowitz and D. Wallace. Experimental validation in
software engineering. Information and Software Technology,
November 1997.


