Rational Creatures

The DNA of a *randimal* is an infinite string of 0's and 1's and is formed as follows: The *randoplast* produces a random string of 100 bits. Then the string doubles itself in length at times 2^{-k} for k = 1, 2, ..., seconds. The whole sequence is completed after one second This doubling in length goes as follows:

If the string is currently x_1, x_2, \ldots, x_m then the doubled string is

 $x_1, x_2, \cdots, x_m, 1 - x_1, 1 - x_2, \cdots 1 - x_m.$

The behaviour of the creature is rational or irrational, depending on whether the DNA defines a rational or irrational number. Are there any rational randimals? **Solution** Unfortunately, all randimals are irrational. We will give two proofs, one is short and self contained. The other relies on properties of the famous *Thue-Morse* or *Prowhet-Thue-Morse* sequence.

Proof 1: Let the sequence after r iterations be denoted by $\mathbf{x}^{(r)}$. We claim that no matter what the initial sequence $\mathbf{x}^{(0)} = (x_1 x_2 \cdots x_k)$, the final sequence $\mathbf{x}^{(\infty)}$ defines an irrational number. Suppose to the contrary, that there exists an initial sequence for which the final sequence $\mathbf{x}^{(\infty)}$ can be expressed as $uvvvvvvvvvvv\cdots$ for some finite sequences u, v. Let $|v| = 2^a b$ where $a \ge 0$ and b is odd.

We show first that a must be strictly positive. Indeed, suppose that a = 0 and b = 2p+1 and w.l.o.g. that v has more 1's than 0's. Now after q iterations of our procedure, the string $\mathbf{x}^{(q)}$ produced so far will be of length $\ell = 2^q k$ and will have an equal number of 0's and 1's. Suppose that $\ell \in [|u| + t|v| + 1, |u| + (t+1)|v|]$ where $t = \lfloor (\ell - |u|)/|v| \rfloor$. Then $\mathbf{x}^{(\ell)}$ has at least (p+1)t 1's and at most pt + |u| + |v| 0's. If q is large enough so that t > |u| + |v| then $\mathbf{x}^{(q)}$ will have more 1's than 0's, contradiction.

We can assume that |u| is even, otherwise replace $\mathbf{x}^{(0)}$ by $\mathbf{x}^{(1)}$ as the initial sequence. Now assume that our initial sequence has been chosen so that a is as small as possible. If we delete the even entries of our initial sequence, and run our process, then we will produce a sequence $u'v'v'v'\cdots$ where u', v' are obtained from u, v by deleting entries in even positions. This reduces a to a - 1, contradicting our assumption that a is as small as possible.

Proof 2: This uses a property of the famous *Thue-Morse* or *Prouhet-Thue-Morse* sequence. This is the sequence S of 0's and 1's that you get if you start the above process with a $\mathbf{x}^{(0)} = 0$ i.e.

It is known that S is *cube free* i.e. S does not contain a consecutive substring of the form www, for a substring w.

If $|\mathbf{x}^{(0)}| = m$ then the subsequence $\mathcal{X} = (x_{mn+1}, n \ge 0)$ is either \mathcal{S} or $1 - \mathcal{S}$ and as such is cube free. This implies that $\mathbf{x}^{(\infty)}$ is irrational. Suppose for example that $\mathbf{x}^{(\infty)} = xyyyyyy\cdots$ for some strings x, y. We can assume that |x| is a multiple of m. Indeed we can assume $|x|, |y| \ge m$ by adding y's to x and then replacing y by multiples of y if necessary. Then, if |x| = mp + q then we let x' = xz where z is the first m - q bits of y and then let y' = wz where w is the last |y| - (m - q) bits of y. This yields $\mathbf{x}^{(\infty)} = x'y'y'y'\cdots$ and because each y' starts with a member of \mathcal{X} and contains the same number of elements we see immediately that this implies \mathcal{S} is not cube free, contradiction.

Acknowledgement: We thank Amarnath Bhattcharya, Kaushik Basu, Akash Kumar, Michael Schuresko for their comments.