## Take the last chip: solution

Let us generalise the game in the following way. There are 2 players A and B and A goes first. We have a non-decreasing function f from  $N \to N$  where  $N = \{1, 2, ...\}$  is the set of natural numbers. At the first move A takes any number less than h from the pile, where h is the size of the initial pile. Then on a subsequent move, if a player takes n chips then the next player is constrained to take at most f(n) chips. Thus the puzzle considered the cases f(n) = n and f(n) = 2n.

There is a set  $\mathcal{H} = \{H_1 = 1 < H_2 < \ldots\}$  of initial pile sizes for which the first player will lose, assuming that the second player plays optimally. Also, if the initial pile size  $h \notin \mathcal{H}$  then the first player has a winning strategy. The following theorem is taken from Zieve [2] and is attributed there to Epp and Ferguson [1].

## Theorem

If  $f(H_j) \geq H_j$  then  $H_{j+1} = H_j + H_\ell$  where

$$H_\ell = \min_{i < j} \{H_i \mid f(H_i) \geq H_j\}.$$

Furthermore, if  $f(H_j) < H_j$  then the sequence of losing positions is finite and ends with  $H_j$ .

Before proving the theorem we observe that the theorem implies

$$f(n) = n$$
 implies  $\mathcal{H} = \{1, 2, 4, ..., 2^k, ..., \}$   
 $f(n) = 2n$  implies  $\mathcal{H} = \{1, 2, 3, ..., F_k, ..., \}$ 

where the  $F_k$  are the Fibonacci numbers.

**Proof of theorem** Assume that  $f(H_j) \ge H_j$ ; then  $H_\ell = \min_{i \le j} \{H_i \mid f(H_i) \ge H_j\}$  exists. For any losing position  $H_i < H_\ell$ , we have  $f(H_i) < H_j$ , so from an initial pile of size  $H_j + H_i$ , Player A can remove  $H_i$  chips and win, since this leaves B with a pile of size  $H_j$  from which he/she cannot remove all chips.

Now let  $x < H_{\ell}$  be a winning position. Given a pile of size  $H_j + x$ , Player A can employ a winning strategy for a pile of size x whose final move involves y chips, where  $f(y) < H_j$ ; this again leaves Player B with a pile of size  $H_j$  from which he/she cannot remove all chips. (Player A can always arrange for y to satisfy this property because if the last move y of a winning strategy for x satisfies  $f(y) \ge H_j$ , then  $y < H_{\ell}$  cannot be a losing position – from definition of  $H_{\ell}$  – and consideration of a winning strategy for y leads to a smaller final move).

Finally, from a pile of size  $H_j + H_\ell$ , if Player A takes at least  $H_\ell$  chips then Player B takes the rest and wins. If Player A takes less than  $H_\ell$  then we fall into the preceding paragraph's situation with the roles reversed. This proves the first statement of the theorem.

If  $f(H_j) < H_j$ , suppose we had  $H_{j+1} = H_j + x$  for some x > 0. As above, x cannot be any  $H_i$ , since then Player A wins from  $H_j + H_i$  by removing  $H_i$  chips, because  $f(H_i) \le f(H_j) < H_j$ . Now since  $x < H_{j=1}$ , x must be a winning position. Thus Player A can win from  $H_j + x$  by employing a winning strategy for x whose final move is y, where  $f(y) < H_j$ . Thus  $H_{j+1}$  is not a losing position – contradiction, i.e. there is no  $H_{j+1}$ .

## References

[1] R.J. Epp and T.S. Ferguson, A note on Take-away Games, Fibonacci Quarterly 18 (1980) 300-303.

[2] M. Zieve, Take-away Games, In *Games of no chance*, R.J. Nowakowski Editor, MSRI Publications 29 (1994) 351-362.