
Enabling Adaptivity in User Interfaces ?

Javier Cámara1, Carlos Canal1, Javier Cubo1, and
Juan Manuel Murillo2

1 Department of Computer Science, University of Málaga
Campus de Teatinos, 29071. Málaga, Spain

{jcamara,canal,cubo}@lcc.uma.es
2 Dept. of Computer Science, University of Extremadura, Spain.

Avda. de la Universidad s/n, 10071. Cáceres, Spain
juanmamu@unex.es

Abstract. The development of adaptive user interfaces has tradition-
ally been restricted to research prototypes and few commercial products.
Although there have been relevant achievements in the architectural sup-
port for self-adaptive context-aware systems [3, 19], the notion of context
commonly supported is restricted and does not explicitly contemplate the
facets of context related to user-application interaction. Furthermore, ap-
plications need to comply with the proposed architectures, making the
incorporation of adaptivity more difficult (or not possible at all) in the
case of already existing applications. This work addresses key issues for
the incorporation of self-adaptive behaviour in GUI-Based applications,
and proposes an aspect-based framework in order to overcome current
limitations.

1 Introduction

As computing applications become more complex and sophisticated, users tend
to spend more time and effort trying to instruct and configure them, having to
explicitly state an ever-increasing amount of information in order to efficiently
carry out the tasks they are demanded. This happens because computing ap-
plications are not context-aware entities, and must be supplied with additional
(context related) information that we, as human beings, implicitly assume in dif-
ferent situations. Contextual information has a dynamic nature and changes as
we interact with our environment. The notion of a changing context dependent
on user-application interaction has been subject to research by the Computer
Science Community by many years [18], producing a broad range of interactive
systems with the same philosophy in common: that it can be worth learning
something from the user and adapt to it in some non-trivial way. This kind of
system has been labelled in different ways, ranging from personalized systems to
Intelligent User Interfaces (IUIs). We will refer to them as User Adaptive Sys-
tems, or more specifically as Adaptive User Interfaces (AUIs) [11]. These contrast
? This work has been partially supported by the project TIN2004-07943-C04-01 funded

by the Spanish Ministry of Education and Science (MEC), and project P06-TIC-
02250 funded by the Andalusian local Government.

2 Javier Cámara, Carlos Canal, Javier Cubo, and Juan Manuel Murillo

with traditional user interfaces, rigid and passive, which allow only a small de-
gree of user customization by setting preferences. Making interfaces flexible and
adaptable to the user implies the extraction of a user model by retrieving infor-
mation based on the interaction of the user with the interface. Then, based on
predictions made using that information, the system modifies its behaviour and
structure for a better interaction with the user.

Dey and Salber define context in [19] as: Any information that can be used
to characterize the situation of an entity. An entity is a person, or object that
is considered relevant to the interaction between a user and an application, in-
cluding the user and application themselves. Specifically, in our proposal we deal
with two types of context-related information:

– Application context : Information related to UI description, application do-
main, and task specifications.

– User context : Information related to user behaviour and preferences.

There is a third kind of Contextual information relevant to the application
referred to as environmental or sensed [7]. This information is indirectly related
to the behaviour of the user and includes location, time, etc. However, in this
work we focus just on application and user context information, since the use of
environmental context has been broadly studied in the field of context-aware ap-
plications [2]. In this work we advocate for the adoption of a new architectural
approach to the development of adaptive interfaces based on Aspect-Oriented
Programming (AOP) [17], which provides the foundations to enable adaptive
behaviour in applications which have already been deployed. Hence, rather than
dealing with user modeling or learning algorithms, this work is focused on how
aspects can be used to apply such techniques on already existing systems, ex-
tending them with adaptive capabilities.

The rest of this paper is organised as follows: Section 2 points out the main
issues for the incorporation of adaptive behaviour in UIs. Section 3 and 4 describe
and detail the design and implementation of the framework. Section 5 describes
some related work. Finally, section 6 discusses the benefits our proposal purports
as well as some open issues.

2 Issues Reusing and Enabling Adaptivity

(i) Poor reusability. Building an AUI involves the inclusion of additional re-
quirements to the system, such as user modeling techniques (which implies re-
trieving information derived from the interaction with the user) or dynamic re-
configuration of structure and behaviour. Developing these mechanisms is costly,
and often requires the use of sophisticated techniques specifically tailored to each
individual application. As a result, the application code which corresponds to
the adaptive mechanisms is tightly coupled with the rest of the application,
hampering reusability.
(ii) Lack of transparency. Even when the architectural support for the AUI
provides a good modularization, AUIs are generally tailored for an specific ap-

Enabling Adaptivity in User Interfaces 3

plication [10, 20]. In such a way, the effective reuse of new behaviour is affected
by its underlying representation.
(iii) User model fragmentation and redundancy. Different applications
tend to have different user models. Moreover, each application retrieves and
stores its own information locally, and with its own representation, impeding
the reuse of this information by other applications. This results in a fragmented
and heterogeneous user model which only reflects a partial view of the user’s
behaviour and preferences to different applications.
(iv) Lack of coordination. Conventional techniques do not consider the possi-
bility of coordinating adaptation between different existing applications located
within a shared context. In such a way, applications cannot communicate with
each other in order to carry out tasks collaboratively.

3 Framework Architecture

This section describes our aspect-oriented framework, intended to enable adap-
tive capabilities on passive GUI-based applications. The architecture of this
framework is structured using a modified version of the the Adaptability Aspects
[4] architectural pattern in order to provide better maintainability and modu-
larity. Adaptability Aspects are applied to a base application for the adaptation
of its interface. As it can be observed in Figure 1, the framework incorporates
the following functional elements:

– Context Manager. Identifies context changes and triggers adaptive actions
implemented by the aspects. It constantly monitors user input through the
UserMonitor aspect, and the UI through the UIMonitor aspect, identifying
the structure, properties, and relations between its components.

– Adaptation Data Provider. Consists on a set of classes which manage the
information related to the different models required for UI adaptation and its
processing. Specifically, the User Model holds up information about user
context, while Task Model, Domain Model, and UI Model comprise
information about application context. These elements provide the input
to the Reasoner module, where the specific adaptive logic is implemented
(learning and inference). The reasoner produces an Adaptation Model as
the result of the application of the adaptive mechanisms, which is used as a
specification for the adaptation to be performed on the interface.

Adaptability Aspects adapt the interface using the adaptation model
whenever they match user-generated or UI events. For that purpose, they use a
set of Auxiliary Classes intended to improve reusability. These provide com-
mon mechanisms for the addition, modification, or removal of UI components.

Figure 2 depicts how the elements of the framework interact when a context
change triggers an adaptation on the application behaviour:(a) The application
starts execution.(b) The context manager begins to monitor the context contin-
uously.(c) Whenever an event in the UI is detected, both adaptability aspects
and adaptation data provider are notified.(d) The adaptation data provider

4 Javier Cámara, Carlos Canal, Javier Cubo, and Juan Manuel Murillo

Adaptability
Aspects

<<aspect>>
AdaptationAspects

Adaptation Data
Provider

Context Manager
Base Application

<<group>>
User Interface

<<group>>
Application Logic

<<aspect>>
UIMonitor

pointcut renderUIContainer

<<aspect>>
UserMonitor

pointcut userEvent

<<group>>
UI Model

<<group>>
User Model

<<group>>
Domain Model

<<group>>
Task Model

<<group>>
Reasoner

<<aspect>>
AdaptabilityAspect

<<aspect>>
AdaptabilityAspect

Auxiliary Classes

<<uses>>

<<affects>>

 <<affects>>

 <<uses>>
 <<affects>>

ContextEventVerifier

getEventInfo():EventDescriptor
setEventProperties(...)

EventDescriptor

source:String
type:String
...

<<aspect>>
AdaptationProtocol<<affects>>

The information obtained
by User and UI monitors

is used to update their
respective models.

<<aspect>>
GenericAdaptabilityAspect

applyAdaptation(ruleSet r)

Adaptation Model

ruleSet getRules(EventDescriptor)

<<aspect>>
ObserverProtocol

Fig. 1. Framework Architecture. Stereotypes <<affects>> and <<uses>> are used in
some dependency relationships to represent classes whose behavior is monitored or
changed by an aspect, or those used as auxiliary classes by an aspect, respectively.

updates the adaptation model.(e) Adaptability aspects access the adaptation
model to verify if adaptation should be performed. (f)Aspects change the ap-
plication behavior making use of the auxiliary classes. It is worth noticing that
when adaptability aspects are notified about a context change, the adaptation to
be performed is not carried out inmediately. On the contrary, adaptive behavior
is introduced on the base application just after the adaptation model has been
updated.

4 Detailing the Framework

Currently, there is a wide range of toolkits which can be used in order to build
GUI-based computer applications, such as KDE/Qt, GNOME/GTK/GTK+,
MFC, JFC, etc. All of them provide similar abstractions and basic mechanisms
both for the programmer and the user. Although our approach is applicable
to other toolkits and aspect languages, we use JFC (specifically Swing) and
AspectJ[12] in the implementation of our prototype for their widespread use.

Within the Context Manager, the UIMonitor aspect obtains information
about the structure, properties, and relations between UI components. In Swing

Enabling Adaptivity in User Interfaces 5

Adaptability
Aspects

Auxiliary
Classes

Adaptation
Data Provider

(c) notifies UI/User
generated event

Context
Manager

Base
Application (UI)

(b) UI/User generated event

(a) starts

(f) uses
(f) applies changes

(d) updates
adaptation
model

(e) verifies if adaptation should be performed

Fig. 2. Dynamics of the process followed for UI adaptation.

and other toolkits, components can either be regular, or have the capability to
group other components together. Such components act as containers and in-
clude panels, windows, frames, and dialogs. The structure of a container (e.g.,
a window), along with its nested components in a hierarchical structure is ob-
tained defining a renderUIContainer pointcut to match the join points where a
container is rendered. It can be observed how the Container object is exposed to
the body of the advice applied to the join point. The inspection code in the ad-
vice builds recursively a structure with all the child components of the container,
which is incorporated into the UI Model along with component properties.

1: aspect UIMonitor {

2: java.util.List myComponents=new java.util.ArrayList<Component>();

3: pointcut renderUIContainer (Container c):

4: call (* java.awt.Container.setVisible(*)) && target(c);

5: void getComponentList(Container container,

5: java.util.List<Component> components){

6: for (Component component : container.getComponents()){

7: if (component instanceof Container)

8: getComponentList((Container) component, components);

9: components.add(component); }

10: } ...

11: after (Container c): renderUIContainer(c){

12: if (!UIModel.getComponent(c.getName())){

13: UIModel.add(getComponentList (c, myComponents));

14: myComponents.clear(); }

15: }

16: }

6 Javier Cámara, Carlos Canal, Javier Cubo, and Juan Manuel Murillo

The extraction of the properties of each of the components in the structure
is realised through reflection. It is worth mentioning that textual information is
of special relevance to the purpose of our framework. This kind of information
is present in almost any UI component. Note that Menu Items, Buttons, Labels,
CheckBoxes, etc. have well defined properties (e.g., Text, ToolTipText, etc.)
which provide semantic information about the role of the component in the
application.

The implementation of the User Monitor as an aspect provides a way of
retrieving user implicit information unobtrusively. While interacting with the
UI, every time the user types a character or clicks on an object, an event
occurs. To detect user action on the interface, an object must implement the
ActionListener interface. The program must register this object as an action
listener on the button (i.e., the event source), using the addActionListener
method. When the user clicks the button, it fires an action event. This results in
the invocation of the action listener’s actionPerformed method. The argument
to the method is an ActionEvent object that gives information about the event
and its source. The userEvent pointcut is defined in the UserMonitor aspect to
match any invocations of an actionPerformed method within the scope of the
application:

pointcut userEvent(EventObject e, EventListener l):

execution (void *.*(*)) && args(e) && target(l);

Both EventListener and the EventObject are exposed to the body of the
advice applied, which incorporates relevant information about the event (source
object, time, action performed, etc.) to the user model. Hartman and Bass [9]
provide a detailed discussion about this approach to capturing interaction be-
tween user and applications.

Adaptability Aspects are notified by the context manager whenever a spe-
cific event occurs. This is achieved extending an implementation of the Observer
pattern described in [8]. Specifically, whenever an event is matched by monitor
aspects, the EventDescriptor in the ContextEventVerifier class is updated
by the aspect. Then, the following AdaptationProtocol updates all the observ-
ing aspects, applying adaptation if the adaptation model determines that the
produced event requires adaptation.

1: public aspect AdaptationProtocol extends ObserverProtocol{

2: declare parents: ContextEventVerifier implements Subject;

3: declare parents: AdaptivityAspect implements Observer;

4: protected pointcut subjectChange(Subject s):

5: call (call ContextEventVerifier.setEventInfo(..)) && target(s);

6: protected void updateObserver(Subject s, Observer o) {

7: ContextEventVerifier cev = (ContextEventVerifier) s;

8: ((AdaptivityAspect)o).applyAdaptation(

8: am.getRules(cev.getEventDescriptor());

9: }

10: }

Enabling Adaptivity in User Interfaces 7

The Adaptation Data Provider produces appropriate correspondences
between user action and UI adaptation. This module enables the system to
appropriately process the information which has been previously acquired. In
order to represent UI components, the framework uses UI-specific ontologies, and
domain-specific ontologies for representing the application’s domain. Semantic
information present in components is used to establish relations between UI
and domain-specific ontologies. For the task model, we integrate a task ontology
based on ConcurTaskTrees [16], which is a hierarchical notation which allows the
specification of (sub)tasks or nodes that need to be performed to successfully
complete a task.

A) C)

B)

Fig. 3. A) Sample application dialog.B) Component hierarchy.C) Lattice representa-
tion of the UI Model ontology extended with the component hierarchy from the dialog.

The generation of an Adaptation Model involves significant decision-making
capability. Hence, the Reasoner must support the writing of rules specifying the
decisions that need to be made. Although these decisions may be sometimes
relatively simple, truly adaptive behaviour implies that most of the time adap-
tation rules are likely to change over time. For this reason the prototype uses a
rules engine, where a set of rules can be repeatedly applied to the collection of
facts available in the different model ontologies. Rules that apply are executed,
modifying the Adaptation Model accordingly. Specifically, the framework uses
Jess [5], which is very convenient since it allows direct creation and manipulation
of Java objects.

5 Related Work

Supporting GUI adaptation based on AOP is not a new idea. Send́ın et al. take
in [21] a non-intrusive approach to the problem of GUI plasticity, but depending
exclusively on environmental context information. Hence, the UI is adapted de-
pending on device characteristics, location, etc., but it is not responsive to user
interaction.

8 Javier Cámara, Carlos Canal, Javier Cubo, and Juan Manuel Murillo

Proposals such as the Context-Broker Architecture (CoBrA) or the Context
Toolkit [3, 19] relieve developers from building specific adaptive mechanisms,
letting them focus on adaptive behaviour. However, these proposals do not ex-
plicitly deal with the particularities of user interfaces, and lack the transparency
of the AOP approach since applications have to comply with the architecture’s
specifications.

To our knowledge, there is no proposal available focused on enabling adaptiv-
ity in already existing applications based on user-computer interaction context.
Furthermore, ours is a non intrusive approach that enables the use of an additive
plug-in structure to reuse general patterns of adaptive behaviour.

6 Conclusions

This work advocates for an aspect-based approach to enable adaptive behaviour
on already existing, GUI-based applications. We have presented a framework
which allows to overcome the different problems described in section 2: (i)Poor
reusability and (ii) Lack of transparency. The framework’s architecture
enables reusability and transparency, providing an explicit and non-invasive way
of altering and extending the UI. The use of the presented framework permits
to apply general adaptation patterns to different facets of regular applications
in a transparent way (i.e.,the application does not need to be specifically pre-
pared for adaptation and will still benefit from adaptive behaviour not specifi-
cally designed for it).(iii)User model fragmentation and redundancy. The
framework is able to collect user information unobtrusively and in a centralized
manner. The use of a global user model accessible to all applications through a
generic user modeling server [13] enables adaptive applications to cooperatively
retrieve and use both implicit and explicit (i.e., preferences) information from
the user. This ensures data consistency, and a fast growth of the amount of
information obtained from users. As a result, learning and inference based on
that information is more accurate and efficient, since applications have better
user models available in shorter periods of time. User information is precious
to AUIs, to the point that learning algorithms are specifically tailored to work
with very restricted sets of information [14]. (iv)Lack of coordination. The
ontology model supported by the Adaptation Data Provider enables coordinated
adaptation since cross-inference and learning can be performed on different ap-
plication UIs. Domain and Task Models can be developed to comprise several
applications, bridging tasks across different UIs.

Currently, our framework prototype is being extended in order to apply it
to real-world examples of adaptive systems. We intend to validate our proposal
implementing systems which have already been described in the literature [6, 10]
with our approach to test its applicability. In this sense, we have a special interest
in applying it to end-user/Programming by Demonstration (PBD) development
systems [15, 1], a field in which our approach can realise its full potential.

Enabling Adaptivity in User Interfaces 9

References

1. M. M. Burnett, C. R. Cook, and G. Rothermel. End-user software engineering.
Commun. ACM, 47(9), 2004.

2. G. Chen and D. Kotz. A Survey of Context-Aware Mobile Computing Research.
Technical Report TR2000-381, Dartmouth College, 2000.

3. H. Chen, T. Finin, and A. Joshi. An intelligent broker for context-aware systems.
4. A. Dantas and P. Borba. Adaptability aspects: An architectural pattern for struc-

turing adaptive applications with aspects. In Proc. of SugarLoafPLoP’2003.
5. E. Friedman-Hill. Jess in Action. Manning Publications, 2003.
6. K. Z. Gajos, M. Czerwinski, D. S. Tan, and D. S. Weld. Exploring the design space

for adaptive graphical user interfaces. In Proc. of AVI’06.
7. P. Gray and D. Salber. Modelling and using sensed context information in the

design of interactive applications. LNCS, 2254, 2001.
8. J. Hannemann and G. Kiczales. Design pattern implementation in Java and As-

pectJ. In Proc. of OOPSLA’02.
9. G. S. Hartman and L. Bass. Logging events crossing architectural boundaries. In

Proc. of INTERACT’05, volume 3585 of LNCS, 2005.
10. L. A. Hermens and J. C. Schlimmer. A machine-learning apprentice for the com-

pletion of repetitive forms. IEEE Expert, 9(1), 1994.
11. A. Jameson. The Human-Computer Interaction Handbook, chapter Adaptive In-

terfaces and Agents. Lawrence Erlbaum Associates, 2003.
12. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.

An Overview of AspectJ. In Proc. of ECOOP’01, volume 2072 of LNCS, 2001.
13. A. Kobsa. The Adaptive Web: Methods and Strategies of Web Personalization,

chapter Generic User Modeling Systems. Springer, 2007.
14. P. Langley. Machine learning for adaptive user interfaces. LNCS, 1303, 1997.
15. A. I. Mørch, G. Stevens, M. Won, M. Klann, Y. Dittrich, and V. Wulf. Component-

based technologies for end-user development. Commun. ACM, 47(9), 2004.
16. F. Paterno, C. Mancini, and S. Meniconi. Concurtasktrees: a diagrammatic nota-

tion for specifying task models. In Proc. of INTERACT’97.
17. F. R.E. and D. Friedman. Aspect-Oriented Software Development, chapter Aspect-

Oriented Programming is Quantification and Obliviousness. Addison-Wesley, 2004.
18. E. Ross. Intelligent user interfaces: Survey and research directions. Technical

Report CSTR-00-004, University of Bristol, 2000.
19. D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit: Aiding the develop-

ment of context-enabled applications. In Proc. of CHI’99, 1999.
20. R. Segal and J. O. Kephart. Mailcat: An intelligent assistant for organizing E-mail.

In Proc. of Agents’99, 1999.
21. M. Send́ın, J. Lorés, F. Montero, and V. López-Jaquero. Towards a framework to

develop plastic user interfaces. In Proc. of Mobile HCI’03, volume 2795 of LNCS,
2003.

