A Case Study in
Model-based Adaptation of Web Services

Javier Cdmaral, José Antonio Martin?, Gwen Salaiin?,
Carlos Canal?, and Ernesto Pimentel?

I INRIA Rhone-Alpes, France
Javier.Camara-Moreno@inria.fr
2 Department of Computer Science, University of Mélaga, Spain
{jamartin, canal,ernesto}@lcc.uma.es
3 Grenoble INP-INRIA-LIG, France
Gwen.Salaun@inria.fr

Abstract. Developing systems through the composition of reusable software ser-
vices is not straightforward in most situations since different kinds of mismatch
may occur among their public interfaces. Service adaptation plays a key role in
the development of such systems by solving, as automatically as possible, mis-
match cases at the different interoperability levels among interfaces by synthe-
sizing a mediating adaptor between services. In this paper, we show the applica-
tion of model-based adaptation techniques for the construction of service-based
systems on a case study. We describe each step of the adaptation process, start-
ing with the automatic extraction of behavioural models from existing interface
descriptions, until the final adaptor implementation is generated for the target
platform.

1 Introduction

The widespread adoption of Service-Oriented Architectures in the last few years has
fostered the need to develop complex systems in a timely and cost-effective manner
by assembling reusable software services. These can be considered as blocks of func-
tionality which are often developed using different technologies and platforms. On the
one hand, SOA enables developers to build applications almost entirely from existing
services which have already been tested, resulting in a speed-up of the development
process without compromising quality. On the other hand, the potential heterogeneity
of the different services often results in interoperability issues at different levels which
have to be solved by system architects on an ad-hoc basis.

In order to ensure interoperability, service interfaces must provide a comprehensive
description of the way in which they have to be accessed by service consumers. Com-
position of services is seldom achieved seamlessly because mismatch may occur at the
different interoperability levels (i.e., signature, interaction protocol/behaviour, quality
of service, and functional). Software adaptation [|6/17]] is a recent discipline which aims
at generating, as automatically as possible, mediating services called adaptors, used to
solve mismatches among services in a non-intrusive way.

2 Authors Suppressed Due to Excessive Length

: - - ™
Service Signature + Behavioural Adaptor
Interface {?:3

Descriptions > Models
Interface Model JY\é;Sp I?EII._
WSDL+ Extraction ﬁ
Abstract WDt

BPEL Windows

WSDL+ — = W?Vr\II(If:I;)W
Windows [| = U o, - »| Verification
Workflow 8 >[I Specification e _ Validation I]
(WF) Architect | .
l Adaptor Protocol Adaptor

Adaptation | __Generation Implementation | .
Contract @ @ g

- Adaptor Protocol Model "

Fig. 1. Generative adaptation process

So far, most adaptation approaches have assumed interface descriptions that include
signatures (operation names and types) and behaviours (interaction protocols). Describ-
ing protocols in service interfaces is essential because erroneous executions or deadlock
situations may occur if the designer does not consider them while composing services.

In this paper, we show the application of model-based adaptation techniques [S412]]
(see Figure|l) for Web services, focusing on a case study that we use to illustrate the
different steps in the approach. The process starts with the automatic extraction of be-
havioural service models from existing interface descriptions. These descriptions in-
clude a WSDL specification of the different operations made available at the service
interface, as well as a specification of the behaviour of the service which can be given
in languages such as Abstract BPEL, or Windows Workflows. Next, the designer can
build an adaptation contract, which is an abstract specification of how mismatch cases
among the different service interfaces can be solved. This is not a trivial task, there-
fore we propose a graphical representation and an interactive environment to guide the
designer through the process. Once the adaptation contract is built, its design can be
validated and verified using techniques which enable the visual simulation of the exe-
cution of the system step-by-step, finding out as well which parts of the system lead to
erroneous behaviour (deadlocks, infinite loops, violation of safety properties, etc.). In
such a way, the designer can check if the behaviour of the system complies with his/her
intentions. Once the designer is satisfied with the design, an adaptor protocol model
can be generated and implemented into an actual adaptor which can be deployed in the
target platform.

The rest of this paper is structured as follows: first, we present in Section [2]a de-
scription of the case study that we use to illustrate the different steps of the development
process in the remaining sections. Section[3|presents an overview of the adaptation pro-
cess for our case study, starting with the extraction of behavioural models from existing

A Case Study in Model-based Adaptation of Web Services 3

interface descriptions of the services that we intend to reuse in the system given in
WSDL and Abstract BPEL (Section [3.1). Section [3.2]illustrates the contract specifica-
tion process for our case study. Sections [3.3and [3.4] describe the adaptor protocol gen-
eration and its implementation into an actual adaptor using BPEL as target language,
respectively. Section] concludes the paper.

2 Case Study: Online Medical Management System

We present a case study in the context of a health care organization, which describes
the development of a management system which is required to handle online patient
appointments with general practitioners, as well as with specialist doctors in the orga-
nization. In particular, the system must be able to create appointments for valid system
users who are provided with a username and an access password. After logging in to
the system, the user must be able to request an appointment for a given date either with
a general practitioner, or with a specialist doctor. After checking doctor availability, the
system will return a ticket identifier to the user that corresponds to the provided ap-
pointment. If the system does not find a time slot for the user request, the user should
be allowed to perform additional requests for further appointments.

In order to build this new system, we aim at reusing two existing sub-systems whose
functionality is exposed through different services:

— Service ServerDoc handles appointments with general practitioners.
— Service ServerEsp handles appointments with specialist doctors.

Furthermore, we also reuse a client that implements an example of user require-
ments. It is worth observing that this client enables the user to perform requests both
to general practitioners and specialist doctors in any arbitrary order, whereas a new
policy within the organization establishes that users should not be allowed to sched-
ule appointments with specialist doctors without a prior appointment with a general
practitioner. Hence, this is an important requirement that the system resulting from our
service composition must meet.

3 Overview of the Adaptation Process

3.1 Interface Model Extraction

We assume that service interfaces are specified using both a signature and a protocol.
Signatures correspond to operation names associated with arguments and return types
relative to the messages and data being exchanged when the operation is called. Proto-
cols are represented by means of Symbolic Transition Systems (STSs), which are La-
belled Transition Systems (LTSs) extended with value passing [15]. This formal model
has been chosen because it is simple, graphical, and provides a good level of abstraction
to tackle verification, composition, or adaptation issues [9410416].

At the user level, developers can specify service interfaces (signatures and pro-
tocols) using respectively WSDL, and Abstract BPEL (ABPEL) or WF workflows
(AWF) [7].

4 Authors Suppressed Due to Excessive Length

In order to build the interface models Service Interface Interface Model
of the services and the client to be reused | (o) : (Signawre)
in the system, we parse their WSDL de-
scriptions and generate the correspond- (AbstactBPEL)
ing signatures. Moreover, we can gen- (Abstract Workiow) STS

erate the behavioural part of the model
(STSs) from service interfaces specified
using ABPEL or AWF. To ease the ad-
dition of other possible notations to de- Fig. 2. Interface model extraction.
scribe service interfaces, we use as an in-

termediate step in this parsing process an abstract Web services class (AWS). Thus, one
can add as a front-end another description language with its parser to AWS, and take
advantage of the existing parser from AWS to our model (see Figure [2)).

.. N\
Client 0 @4«
user! usr:string
cl
- password! pwd:string
validateDoc! decision1:bool validateSpec ! decision2:bool
reqDoc ? tktint) reqSpec ? tktint
regDoc! d:string reqSpec! d:string
c4 c6
1 4
'cs cs.
. J
f) (ServerDoc S0 idate? decisi
ServerSpec sp reqSpec2d:string °C o< validate? decision:bool
> + ‘ s3
validate? =2 id? ‘
decision:bool id? usr:string, usr:string replyDoc! tkt:int
pwd:string pwd:string 2
s3
£ @ 2 s1@ - *
replySpec! tktint reqDoc? d:string
N J_ J

@ Final state —-@ Initial state

Fig. 3. Behavioural models for the different services and the client.

Example. The STSs depicted in Figure 3] are obtained after the application of the pars-
ing process to each of the elements of the (running) example.

— The Client can first log on to a server by sending respectively his/her user name
(user!) and password (password!). Then, depending on his/her preferences, the
client can stop at this point, or ask for an appointment either with a general practi-
tioner (reqDoc!) or a specialist doctor (reqSpec!), and then receive an appointment
identifier. Finally, the client can accept or reject the appointment obtained if it is
not convenient for him/her (validateDoc/validateSpec!).

— Service ServerDoc first receives the client user name and password (id?). Next, this
service receives a request for an appointment with a general practitioner (reqDoc?)

A Case Study in Model-based Adaptation of Web Services 5

and replies (replyDoc!). Finally, the service waits for an acknowledgement from the
user either accepting or rejecting the provided appointment (validate?).

— Service ServerSpec first receives a request for an appointment with a specialist
doctor (reqSpec?), followed by the client user name and password (id?). After
checking doctor availability for the given date, an appointment identifier is returned
(replySpec!) to the client. As it happened in the case of the ServerDoc service,
ServerSpec finishes its interaction waiting for an acknowledgement from the user
either accepting or rejecting the provided appointment (validate?).

The composition of the different services in our example is subject to different mis-
match situations among their interfaces:

— Name mismatch occurs if a service expects a particular message, while its coun-
terpart sends one with a different name (e.g., service ServerDoc sends replyDoc!,
whereas the client is expecting reqDoc?).

— N to M correspondence appears if a message on a particular interface corresponds
to several ones in its counterpart’s interface (or similarly, a message has no cor-
respondence at all). In Figure [3]it can be observed that while the client intends to
log in to a service sending user! and password! subsequently, service ServerDoc
expects only message id? for authentication.

— Incompatible order of messages. The relative order of operation invocations among
the different protocols involved is not compatible. We may observe this in our ex-
ample when the client first sends its authentication information and then requests
an appointment with a specialist doctor, whereas the ServerSpec service expects
these messages in the inverse order.

— Argument mismatch may occur when the number and/or type of arguments ei-
ther being sent or received do not match between the operations on the different
interfaces. This can be observed in ServerDoc, when id? expects both a username
(usr) and a password (pwd). The first data term corresponds to user! on the client
interface, whereas the second belongs to password!.

3.2 Adaptation Contract Specification

Once the interface models have been extracted from the WSDL and ABPEL descrip-
tions, we can use them to produce the adaptation contract for our system. In particu-
lar, we use vectors and a vector LTS (VLTS) as adaptation contract specification lan-
guage [14l6l12]]. A vector contains a set of events (message, direction, list of parame-
ters). Each event is executed by one service, and the overall result corresponds to one or
several interactions between the involved services and the adaptor. Vectors express cor-
respondences between messages, like bindings between ports, or connectors in architec-
tural descriptions. In particular, we consider a binary communication model, therefore
our vectors are always reduced to one event (when a service evolves independently)
or two (when services communicate indirectly through the adaptor). Furthermore, vari-
ables are used as placeholders in message parameters. The same variable names appear-
ing in different labels (possibly in different vectors) relate sent and received arguments
in the messages.

6 Authors Suppressed Due to Excessive Length

In addition to vectors, the contract notation includes a Labelled Transition System
(LTS) with vectors on transitions (that we call vector LTS or VLTS). This element is
used as a guide in the application order of interactions specified by vectors. VLTSs go
beyond port and parameter bindings, and express more advanced adaptation properties
(such as imposing a sequence of vectors or a choice between some of them). If the
application order of vectors does not matter, the VLTS contains a single state and all
transitions looping on it.

{Vuser = (c:user!U),
Vpwd = (c:password!P),
Vvidsp = <SSIid?U,P>,
Widdoc = <Sd:id?U7P>, Vuser Vpwd ViddOCVTeqdocz vvidSer\qum
Vregspt = (c:reqSpec!DATE;ss:reqSpec?DATE), Vvalidr reqsp2 ‘valid2
Viegsp2 = (c:reqSpec?RES1;ss:replySpec!RES1),
Vregdocl = (c:reqDoc!DATE;sd:reqDoc?DATE),
Viegdocz = (c:reqDoc?RES2;sd :replyDoc!RES2),
vatidl = {sd:validate?B1;c:validateDoc!B1),
(

Voalid? ss:validate?B2;c: validateSpec!B2) }

Fig. 4. Adaptation contract for our example: vectors (left) and VLTS (right).

Example. Going back to our on-line medical management system described in Sec-
tion 2] let us recall that we intend to compose our services into a working system where
the client can request an appointment with a general practitioner, or also request an ap-
pointment with a specialist doctor, provided that there is a previous appointment with
a general practitioner (i.e., the client cannot directly schedule an appointment with a
specialist).

Figure [4] displays the set of vectors used to solve mismatch among our interfaces.
In order to understand how vectors relate messages on the different interfaces, let us
focus on Vyeqsp2, for instance. Here we may observe that the message reqSpec? on
the client interface is related with the replySpec! message on the ServerSpec interface
the appointment ticket identifier argument on both messages is related by placeholder
RES1 (please refer to Figure[/|for more details about how placeholders relate message
arguments). However, expressing correspondences between messages is not always as
straightforward as in the previous example. We may now focus on the initial part of
the composition, where we want to connect the general practitioner server (ServerDoc)
with the client, and make authentication work correctly. For this, we need three vectors,
respectively Vyser, Vpwa and Vyigqoc, in which we solve existing mismatches by relating
different message names (id, user and password). Here, we first specify the independent
evolution of the client through user! and password! (this is expressed by vectors vy,
and v, which only contain one message). Next, we also specify the independent
evolution of ServerDoc through v,;z40.. Exchanged data parameters among the three
involved messages in the vectors are connected using placeholders U and P.

Regarding the specification of additional constraints on the composition, we can
observe on the right-hand side of Figure[d]that the VLTS for the contract constrains the

A Case Study in Model-based Adaptation of Web Services 7

interaction of the Client, ServerDoc, and ServerSpec interfaces by imposing the request
for an appointment with a general practitioner (Vyeqdoc1) always before the request of
an appointment with a specialist doctor (vy.gsp1). This is achieved by excluding vyegsp1
from the possible transitions in state 0, and including the transition (0,V,eqdoc1,1). O

In order to make the specification as simple and user-friendly as possible, we em-
ploy interactive specification techniques to support the architect through this process.
To this purpose, we use a notation to graphically make explicit bindings between ports
using an interactive environment that enables graphical contract construction and ver-
ification called ACIDE. The graphical notation for a service interface includes a rep-
resentation of its behavioural model (STS) and a collection of ports. Each label on the
STS corresponds to a port in the graphical description of the interface. Ports include
a data port for each parameter contained in the parameter list of the label. Figure
summarizes ports and bindings used in our notation.

Correspondences between
the different service inter-
faces are represented as
port bindings and data port
bindings (solid and dashed
connector lines, respectively). Fig. 5. Graphical notation: ports and bindings
Starting from the graphical
representation of the interfaces, the architect can build a contract between them by suc-
cessively connecting ports and data ports. This results in the creation of bindings which
specify how the interactions should be carried out between the services. It is also pos-
sible to add a T-shaped port cap on a port in order to indicate that it does not have to be
connected anywhere.

The VLTS imposing an order on the application of the bindings is built implicitly
in ACIDE as new bindings are created by the designer. Initially, the VLTS has a single
state and no transitions. Each time a new connection is made, the VLTS is extended in
a different way, depending on the current VLTS extension mode selected by the user:

OuTPort D)~ Data Port O Data Binding —_—

INPort O- Port Cap = Port Binding ~ ===-=

— Abstract mode. No order on the application of the bindings is imposed. Creating
a binding in this mode results in the creation of a transition looping on the current
state in the VLTS.

— Sequential mode. Bindings created in this mode must be executed one after the
other. This results in the extension of the VLTS with a fresh state and a transition
from the current state to the new one. Once this transition is added, the newly
created state becomes the current VLTS state.

— Branching mode. Bindings created in this mode are mutually exclusive. The VLTS
is extended in this case with a fresh state and a transition to it from the current state.
Unlike in sequential mode, the current state is not updated.

Using this implicit method it is possible to build a VLTS for most contracts. How-
ever, the user is also able to directly manipulate the VLTS from within the graphical
environment in order to adjust it to particular situations such as a binding represent-
ing an interaction which has to be carried out more than once in different parts of the
specification.

8 Authors Suppressed Due to Excessive Length

[ITACA::ACIDE

B[E]X]

Fle Edt Tooks View Help

SSE N EEYs FRE L

o $oR

#HAR P

Defton | properties
[Bfo= & ® @ X
o Contract (contract) -
25 Vestors] ey T GTient
5 v VSR thtiint password
#» dientuseri(U) o
5 v vuD roq0 Pt string
wali cate? sert
+» dientipassword (P) g . wer
o v VREQEPZ & I
- dientreqSpec?(RES1) vl date usrstring ewre
++ serverspecirephSpec! (RES1]
et i o . .9 N
> clentreqSpecl(DATE) | _ (O3 —weume () i thtzimt .
#- serverspec:eqspec? (DATE) |~ 6 (NG 7
G v VD0oe ver string reagpes &
; 2
- serverdocid?(U) P string i s reabec
S v VS
. ue) val dototno
werverspes
S v wALDL el s oni kool
++ dientovaldateDoc!(B1) id
- serverdocivalidate?(51) @2 —ceaseci()1 reqgpes
G v e usr:string
anoc o strin
+ dientreqDocl{ DATE) ety B
- serverdocireaDoc?(DATE) validate reaboe
5 v VREQD! wali date? P4
=~ centreqDoc?(RES2) i ¢ o ool otring
++ serverdocireplyDoc!(RES2) veplySpee [-C——— vali dstepec
5 v VALD2
+» dientvaldatespeci(82) Ve teolumer ()2 tetiing ceci s ori:bool
- serverspecivaidate?(B2) e
5 3alTs
5 st d:string
D s00 ~
< m >

< m >

Fig. 6. Contract specification for the Online Medical System in ACIDE

During the specification of the contract, we can also make use of a set of valida-
tion and verification techniques to check that an adaptation contract makes the involved
services work correctly. These techniques are intended to help the designer in under-
standing potential problematic behaviours of the system which are not obvious (even to
the trained eye) just by observing service interaction protocols and adaptation contracts.
These problems may include potential deadlocks, as well as unintended interactions that
are not explicitly addressed at the contract level, which is only an abstract specification
of the adaptation and does not take into account every interaction scenario among ser-
vices. These techniques are completely automated, and include four kinds of checks:
(i) static checks on the contract wrz. STS service interfaces involved, (ii) simulation of
the system execution, (iii) trace-checking to find potential deadlocking executions and
infinite loops, and (iv) verification of temporal logic formulas.

Example. Figure[6]shows a screenshot of the graphical representation of our final adap-
tation contract specification for the medical management system in ACIDE. If we focus
on the graphical representation of the ServerDoc, it can be observed that it contains
a port for the reception of the reqDoc? request with a data port attached representing
the date, and another port for the emission of the replyDoc response with a data port
attached representing the ticket identifier issued for the given date. Moreover, it can be
observed that the interactions expressed by vectors in our contract are represented by
port bindings in the graphical environment.

A Case Study in Model-based Adaptation of Web Services 9

3.3 Generation of the Adaptor Protocol

Being given a set of service interfaces and an adaptation contract, an adaptor protocol
can be generated using automatic techniques as those presented in [12]]. An adaptor is
a third-party component that is in charge of coordinating the services involved in the
system with respect to the set of constraints defined in the contract. Consequently, all
the services communicate through the adaptor, which is able to compensate mismatches
by making required connections as specified in the contract.

From adaptor protocols, either a central adaptor can be implemented, or several
service wrappers can be generated to distribute the adaptation and preserve parallelism
in the system’s execution. In the former case, the implementation of executable adaptors
from adaptor protocols can be achieved for instance using Pi4SOA technologies [1]], or
techniques presented in [12]] and [7] for BPEL and Windows Workflow Foundation,
respectively. In the latter case, each wrapper constrains the functionality of its service
to make it respect the adaptation contract specification [[15].

Adaptor and wrapper protocols are automatically generated in two steps: (i) sys-
tem’s constraints are encoded into the LOTOS [[L1] process algebra, and (ii) adaptor
and wrapper protocols are computed from this encoding using on-the-fly exploration
and reduction techniques. These techniques are platform-independent, therefore while
exploring the state space, all the behaviours (interleaving) respecting the adaptation
constraints are kept in the adaptor model. The reader interested in more details may
refer to [[12415]).

Adaptor
V4

ServerDoc : user?U

M v O

id ?usr pwd user?U
A
id?usr,pwd . password?P
® id Mp password!%wd

§ id!U,P password?P : Q
i : e :

.......

Client

V.3
Es:r!usr
o—eo-

password!pwd

O

related by placeholder P

Fig. 7. Example of adaptation for authentication mismatches

Example. Figure [7| shows a small portion of the adaptor protocol generated from the
three vectors vys, = (c:user!U), vp,q = (c:password!P) and vyiggoc = (sd :id?U,P)
given in Figure [d] This makes service ServerDoc and the Client interact correctly. We
emphasize that the adaptor synchronizes with the services using the same name of mes-
sages but the reversed directions, e.g., communication between id? in ServerDoc and
id! in the adaptor. Furthermore, when a vector includes more than one communication
action, the adaptor always starts the set of interactions formalized in the vector with the

10 Authors Suppressed Due to Excessive Length

receptions (which correspond to emissions on service interfaces), and next handles the
emissions.

Figure[8]displays the adaptor protocol generated using the adaptation contract shown
in Figure 4] This adaptor contains 51 states and 73 transitions, and therefore has rea-
sonable size and complexity. Interaction starts by receiving the user?, password? and
reqDoc? messages sent by the Client. Next, the adaptor starts interacting with ServerDoc
by first sending authentication information (id!) and then the request posted previously
by the client (reqgDoc!). Once the client and the doctor have ended their interaction, the
adaptor can send a request to interact with the specialist (reqSpec?), this is the case in
state 25 for example. Note that in the bottom part of the adaptor protocol, correspond-
ing to the interaction with the specialist, the adaptor can treat several specialist requests
(e.g., reqSpec? in state 31). Notice also that the adaptor can terminate at different points
of its execution (transitions labelled with FINAL). The adaptor protocol corrects all the
mismatch cases presented in Section [3.1] for instance we can see in state 33 that the
adaptor can submit first the request to the specialist (reqSpec!) and then the authenti-
cation information in state 38 (id!) solving the reordering problem existing between the
client and the specialist service.

If we consider the adaptation contract with vectors only (the corresponding VLTS
consists of a single state with all vector transitions looping on it), the adaptor protocol
consists of 243 states and 438 transitions. This quite high number of states and transi-
tions is due to the release of constraints specified in the original VLTS which imposes
sequentiality on the system (interactions first with the doctor and in a second step with
the specialist), thus reducing interleaving.

3.4 Implementation

Our internal model (STS) can express some additional behaviours (interleaving) that
cannot be implemented into executable languages (e.g., BPEL). To make platform-
independent adaptor protocols implementable wrt. a specific platform we proceed in
two steps: (i) filtering the interleaving cases that cannot be implemented, and (ii) en-
coding the filtered model into the corresponding implementation language.

Filtering. Techniques presented in this paper to generate adaptor protocols are
platform-independent, therefore the adaptor model may contain parts which cannot be
implemented in a given language (e.g., BPEL). This filtering step aims at removing in
the adaptor protocol these non-implementable parts. These parts represent the interleav-
ing of parallel operations and they are not necessary for the functionality of the system.
As an example, if there are several emission transitions going out from the same state,
this leads to non-determinism which cannot be implemented in BPEL. One of the fil-
tering rules states that in such a case, only one emission is kept. In this paper, we reuse
filtering rules presented in [12]. We show in Figure 0] the filtered adaptor protocol. One
can see that the protocol contains first a sequence corresponding to the interaction with
ServerDoc, and next a loop corresponding to the interaction with ServerSpec. The client
must start interacting with ServerDoc, and in state 11, (s)he can choose either to interact
again with ServerSpec, or to stop. This protocol can be implemented in BPEL as we
will see in the remainder of this section.

LIENT (USER 7U

LIENT PASSWORD %

[GLIENT REQDOC 7DATR\FINAL

ERVERDOG 1D UP

ERVERDOC :REQUOC IDATE

ERVERDOC (REPLYDOC 7RES 2

LIENT REQDOC 1RES 2

ISERVERESP VALIDATE 162 [SERVERDOG :VALIDATE

Y

[SERvERESP REPLYSPEC 7RE] 1

A Case Study in Model-based Adaptation of Web Services

CLIENT ‘VALIDATEDOG 781

BERVERDOC :VALIDATE 81 |CLIENT FEQSPEC 7DATRFINAL

SERVERDOC :VALIDATE 1DATE

IBJSERVERESP {REQSPEC IDAJSERVERESP (REQSPEC

lsenverese 10 1P

SERVERDOC :VALIDATE 181 SEAVERESP :AEPLYSPEC REYSEAVERESP -AEPLYSPEC 7RES1

SERVERDOC VALIDATE IBPLIENT ‘REQSPEC IRES //CLIENT FEQSPEC IRES |

CLIENT :REQSPEC 7DATE
CLIENT :VALIDATESPEC 282

SERVERDOC :VALIDATE 181, SERVERESP -VALIDATE 12

SERVERESP (REQSPEC IDATE

LIENT AEQSPEC 7DATE BERVERDOC :VALIDATE 161 |SERVERESP :VALIDATE 162

SEAVERDOC :VALIDATE IBFEAVERESP -REPLYSPEC 7RES

CLIENT :VALIDATESPEC 28:

SERVERDOG {VALIDATE IB{CLIENT REQSPEC IRES 1|

SERVERESP REQSPEC I

SERVERDOG “VALIDATE 181

GLIENT -REQSPEC 7DATE|

1

JENT -AEQSPEC ES 1

SERVERESP VALIDATE 182

SERVERDOC VALIDATE 18

jsEnveresp req sPEC 1DATE

EAVERESP VALIDATE B2 EAVERDOC VALIDATE 181 [CLIENT-REQSPEC DATE [SERVERESP :VALIDATE 162

fserverese rePLYSPEC 7RES|t
SERVERESP VALIDATE 182

LIENT :REQSPEC

1RES

EFVERESP (FEQSPEC IDATE

W

c 782

SERVERESP :VALIDATE 187

Fig. 8. Adaptor protocol generated for the Online Medical System example

BPEL implementation. The adaptor protocol is implemented using a state machine
pattern. The main body of the BPEL process corresponds to a global while activity with

11

12 Authors Suppressed Due to Excessive Length

FINAL \CLIENT:REQSPEC DATE

LIENT:PASSWORD P

SERVERESP:REQSPEC |DATE
FINAL \CLIENT:REQDOC ?DATE ISERVERESP.ID !U,P
[SERVERESP.VALIDATE !B2
ISERVERESP.REPLY SPEC ?RESL

ISERVERDOC:ID !'U,P

[SERVERDOC:VALIDATE !B1

ISERVERDOC:REQDOC !DATE ICLIENT:REQSPEC !RES1

ISERVERDOC:REPLYDOC ?RES2 CLIENT:VALIDATESPEC 7B2

CLIENT:REQDOC 'RES2

CLIENT:VALIDATEDOC 2B1

Fig. 9. Filtered adaptor protocol obtained for the Online Medical System example

if statements used inside it to encode adaptor states and pick statements to choose which
branch to follow depending on the received messages. Variables are used to store data
passing through the adaptor and the current state of the protocol. Timeouts (onAlarm
activities) are used in these pick activities to model FINAL transitions. Every state in
the adaptor behaviour with several incoming or outgoing transitions is encoded as a new
branch of the if activity in the implementation. That branch might contain an internal
pick activity with sequences of communication activities alternated with assignments
to update the variables and change the current state of the execution. Adaptors whose
protocol is a global loop beginning with a final state (such as services ServerDoc and
ServerSpec) are modelled as a sequence, therefore every iteration of the global loop
will be a new instantiation of the adaptor. Let us note that the implementation of the
adaptor is constrained by the specifics of the implementation of the services and the
actual BPEL engine. These might avoid the proper implementation and execution of
the adaptor. For instance, BPEL allows bi-directional and blocking invoke activities and

A Case Study in Model-based Adaptation of Web Services 13

their corresponding receive activities, in some scenarios, these could block the adaptor
and avoid its proper execution. In addition, current BPEL engines do not fully support
BPEL 2.0, for instance, Glassfish 2.1.x does not execute properly BPEL processes with
two different receive activities of the same operation and partner link. This restricts
even further the implementation of the adaptor.

Adaptar

Client

X FICKAL | =
- =

Fig. 10. Implementation of the adaptor in BPEL

Example. shows the behaviour of the filtered adaptor corresponding to the
running example, whereas|[Figure 10]displays a graphical model of part of its implemen-
tation in BPEL. The client interface and the intarfaces of the two servers are located on
the left-hand side and right-hand side of the BPEL implementation, respectively. This
adaptor presents an initial log-in sequence followed by the while activity with a nested
if activity, as previously mentioned. In the first iteration of the loop, the current state
of the adaptor is 2 (see[Figure 9), therefore the execution continues through the if and
pick activities on the left-hand side of the loop. We have an onAlarm which finishes

14 Authors Suppressed Due to Excessive Length

the session because the client might not perform any request at all. Otherwise, once a
request for a general practitioner is processed, the current state of the adaptor is set to
be 11 and we iterate once more. In the second iteration, we have an analogous struc-
ture for specialists requests in the right-hand side of the loop. In this case, however, the
adaptor can process several of such requests (or none) and, when there are not anymore
requests, the onAlarm activity triggers the end of the session.

4 Concluding Remarks

Building systems by adapting a set of reusable software services whose functional-
ity is accessed through their behavioural interfaces is an error-prone task which can
be supported by assisting developers with the automatic procedures and tools supplied
by model-based software adaptation. In particular, existing works dedicated to model-
based behavioural adaptation are often classified in two families. A first class of existing
works can be referred to as restrictive approaches [3l4]13]], and favour the full automa-
tion of the process, trying to solve interoperability issues by pruning the behaviours
that may lead to mismatch, thus restricting the functionality of the services involved.
These techniques are limited since they are not able to fix subtle incompatibilities be-
tween service protocols by remembering and reordering messages and their parameters
when necessary. A second class of solution which can be referred to as generative ap-
proaches [2)6l8] avoid the arbitrary restriction of service behaviour, and supports the
specification of advanced adaptation scenarios. Generative approaches build adaptors
automatically from an abstract specification of how the different mismatch situations
can be solved, often referred to as adaptation contract.

In this paper, we have shown the application of model-based adaptation techniques
for Web services, using a case study on the development of an online medical manage-
ment system to illustrate all the steps of the process. The approach used gathers desir-
able features from existing model-based behavioural adaptation approaches in a single
process. All the steps of the process presented in this paper are fully tool-supported by
a toolbox called ITACA [3]], which enables the specification and verification of adapta-
tion contracts, automates the generation of adaptor protocols, and relates our abstract
models with implementation languages.

With respect to the results that we obtained from the application of the approach
to this and other case studies, we were able to assess that there is a remarkable reduc-
tion both in the amount of effort that the developer has to put into building the adaptor,
as well as in the number of errors present in the final result. Since the test cases used
so far for our experiments were of a small-medium size and complexity, we think that
the difficulty of specifying contracts for bigger systems involving dozens of services
would be not manageable by the developers without tool-supported, model-based adap-
tation techniques. This puts forward the importance of providing such support for the
development of service-based systems.

Acknowledgements. This work has been partially supported by the project TIN2008-
05932 funded by the Spanish Ministry of Innovation and Science (MICINN), and project
P06-TIC-02250 funded by the Junta de Andalucia.

A Case Study in Model-based Adaptation of Web Services 15

References

10.

11.

12.

13.

14.

15.

16.

17.

. Pi4SOA Project. www.pidsoa.org.
. A. Brogi A. Bracciali and C. Canal. A formal approach to component adaptation. The

Journal of Systems and Software, 74:45-54, 2005.

. M. Autili, P. Inverardi, A. Navarra, and M. Tivoli. SYNTHESIS: A Tool for Automatically

Assembling Correct and Distributed Component-based Systems. In Proc. of ICSE’07, pages
784-787. IEEE Computer Society, 2007.

. A. Brogi and R. Popescu. Automated generation of BPEL adapters. In Proc. of ICSOC 06,

volume 4294 of LNCS, pages 27-39. Springer, 2006.

. J. Camara, J.A. Martin, G. Salaiin, J. Cubo, M. Ouederni, C. Canal, and E. Pimentel. ITACA:

An Integrated Toolbox for the Automatic Composition and Adaptation of Web Services. In
Proc. of ICSE ’09, pages 627-630. IEEE Computer Society, 2009.

. C. Canal, P. Poizat, and G. Salaiin. Model-based adaptation of behavioural mismatching

components. IEEE Transactions on Software Engineering, 4(34):546-563, 2008.

. J. Cubo, G. Salaiin, C. Canal, E. Pimentel, and P. Poizat. A Model-Based Approach to the

Verification and Adaptation of WF/.NET Components. In Proc. of FACS’07, volume 215 of
ENTCS, pages 39-55. Elsevier, 2007.

. M. Dumas, M. Spork, and K. Wang. Adapt or Perish: Algebra and Visual Notation for

Service Interface Adaptation. In In Proc. of BPM’06, volume 4102 of LNCS, pages 65-80.
Springer, 2006.

. H. Foster, S. Uchitel, and J. Kramer. LTSA-WS: A Tool for Model-based Verification of Web

Service Compositions and Choreography. In Proc. of ICSE’06, pages 771-774. ACM Press,
2006.

X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In Proc. of
WWW’04, pages 621-630. ACM Press, 2004.

ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal Ordering of
Observational Behaviour. International Standard 8807, ISO, 1989.

R. Mateescu, P. Poizat, and G. Salaiin. Adaptation of Service Protocols using Process Al-
gebra and On-the-Fly Reduction Techniques. In Proc. of ICSOC’08, LNCS, pages 84-99.
Springer, 2008.

H.R.M. Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati. Semi-automated
adaptation of service interactions. In Proc. of WWW ’07, pages 993-1002. ACM, 2007.

P. Poizat and G. Salaiin. Adaptation of Open Component-based Systems. In Proc. of
FMOODS 07, volume 4468 of LNCS, pages 141-156. Springer, 2007.

G. Salaiin. Generation of Service Wrapper Protocols from Choreography Specifications. In
Proc. of SEFM’08, pages 313-322. IEEE Computer Society, 2008.

G. Salaiin, L. Bordeaux, and M. Schaerf. Describing and Reasoning on Web Services using
Process Algebra. International Journal of Business Process Integration and Management,
1(2):116-128, 2006.

D.M. Yellin and R.E. Strom. Protocol specifications and component adaptors. ACM Trans-
actions on Programming Languages and Systems, 2(19):292-333, 1997.

	A Case Study in Model-based Adaptation of Web Services

