
Clint: A Composition Language Interpreter
(tool paper)

Javier Cámara, Gwen Salaün, and Carlos Canal

Department of Computer Science, Universidad de Málaga, Spain
{jcamara,salaun,canal}@lcc.uma.es

1 Introduction

Composition of components or services is a crucial issue when building new
applications by reusing existing pieces of software. This task turns out to be
tedious when behavioural descriptions, acknowledged as one of the essential parts
of component interfaces, are taken into account. Furthermore, mismatches may
exist between component interfaces, and adaptation [2] is necessary to help the
designer to solve them.

In this tool paper, we present Clint, a composition language interpreter. Clint

accepts as inputs (i) behavioural interfaces described using Labelled Transition
Systems (LTSs), and (ii) a composition specification. The latter is described us-
ing vectors that make explicit component interactions, and an LTS labelled with
vectors to define an order on the application of some interactions [5] (important
to solve some specific mismatch cases). Clint implements step-by-step simulation
for the aforementioned inputs, as well as techniques to validate the composition
specification, avoiding undesirable situations such as unexplored parts of the
composition or deadlock states.

In the remainder of this paper, Section 2 introduces behavioural interfaces
and composition specifications. In Section 3, the main functionalities of Clint are
presented. Section 4 draws up some concluding remarks.

2 Behavioural Interfaces, Composition and Adaptation

Behavioural interfaces of components are described using par-LTSs (A, S, I, F,

T ) [4], referred to as LTSs in the rest of the paper for short, where A is a set of la-
bels called alphabet representing message emissions and receptions (respectively
written using ! and ?), S is a set of states (either basic or concurrent), I ∈ S

is the initial state, F ⊆ S are final states, and T ⊆ S × A × S are transitions.
Par-LTSs extend basic LTSs by taking into account concurrent behaviours. This
is achieved by introducing concurrent states. These states are identified by two
or more labels, one for each concurrent branch.

A composition specification describes composition constraints and adaptation
requirements. Vectors relate messages used in different components to implement
interactions. A vector for a set of components Ci with i ∈ {1, .., n}, is a tuple
〈l1, . . . , ln〉 with li ∈ Ai ∪ {ε}, where each Ai is the alphabet of component



2 Javier Cámara, Gwen Salaün, and Carlos Canal

Ci and ε means that some component does not participate in the interaction,
e.g., 〈c1 : comm!, c2 : ε, c3 : comm?〉 for components {c1, c2, c3}. Constraints on
the application ordering of vectors can be given with an LTS whose alphabet is
a set of vectors. A composition specification, for a set of components Ci with
i ∈ {1, . . . , n}, is a couple (V,L) where V is a set of vectors for components Ci,
and L is an LTS whose alphabet is V .

Clint relies on adaptation techniques and algorithms presented in [4] to gener-
ate execution traces from behavioural interfaces and a composition specification.
However, the composition and adaptation engine is implemented as an external
module. Therefore, it makes Clint generic at this level, and allows to take into
account other adaptation techniques as those proposed in [3, 5, 8, 9].

3 Overview of Clint

Clint implements both a composition and adaptation engine, and a graphical
user interface to load, visualise and modify the different inputs. The graphical
interface is also used to animate and validate the composition of an arbitrary
number of components. The tool has been implemented in Python, using the
wxWidgets toolkit technology for the development of the user interface. The
prototype accepts component interfaces described using an XML-based format
or a textual format. The composition specification is written using another XML-
based notation specific to the tool.

Once the inputs are loaded, Clint uses the Object Graphics Library (OGL) to
visualise component interfaces and the composition specification. These inputs
can be edited and modified making use of the graphical interface. As regards ani-
mation and validation techniques, first, interactive simulation of the composition
can be performed in two different modes:

– Safe mode (default). The interface offers the user only safe vectors for selec-
tion (i.e., there exists at least one correct termination state of the system
after its application).

– Unsafe mode. The interface offers all applicable vectors to the user. This
allows the possibility of applying vectors leading to incorrect compositions,
but it may be interesting in order to observe and understand potential flaws
of the composition process.

Additionally, the tool is able to perform validation on the composition speci-
fication wrt. component LTSs. The basic idea is to generate automatically many
random execution traces using the composition engine (unsafe mode). From such
a set of traces, states and transitions are labelled with the number of times they
are traversed. These traces are also used to identify unreachable states or tran-
sitions which are never traversed in the composition specification. Clint colours
the composition specification, highlighting such unreachable states and transi-
tions in the graphical representation. Moreover, Clint can extract traces leading
to deadlock situations. Indeed, when a non-final state in the composition specifi-
cation is reached where no further vectors can be applied, the tool identifies the
sequence of vectors which has lead to the current situation as a deadlock trace.



Clint: A Composition Language Interpreter 3

Figure 1 gives an overview of Clint. The simulation toolbar on the top left
side of the interface, is used to control the evolution and mode of the simulation.
Just below, the applicable vectors panel displays the set of currently applicable
vectors. In this panel, the user can successively select vectors to be applied in
every step of the composition, visualising at the same time the effects of the
application of a specific vector on the graphical representation of component
interfaces and the composition specification on the right. We can also observe
the simulation state panel, which displays the current states of the components
and the composition specification. Finally, the simulation trace panel displays
the trace of the current simulation, including vectors applied, as well as the
actions performed by components and the composition engine.

Fig. 1. Validation of a rate finder service using Clint

Clint has been validated on more than 200 examples, either small ones to ex-
periment boundary cases, or real-world examples such as travel agency, push-out
advertisements, multi-device service, rate finder service, on-line computer ma-
terial store, video-on-demand, music player, disk manager, library management
systems, a SQL server and several other client/server systems. For a comprehen-
sive description of several real-world examples, such as a rate finder service or a
push-out advertisement service, see the Clint webpage [1].



4 Javier Cámara, Gwen Salaün, and Carlos Canal

4 Concluding Remarks

In this paper, we have presented Clint, a graphical and user-friendly tool to
specify and validate compositions of component behavioural descriptions. Our
tool is being applied to the WF/.NET 3.0 platform in order to support the
reuse and composition of such components [6]. Compared to other tools such
as LTSA [7], Clint focuses on the specification and validation of the composi-
tion, whereas LTSA focuses on the component description, and relies on basic
synchronization techniques. As regards future work, our main perspective aims
at extending Clint to support the incremental construction of the composition
specification. Indeed, the writing of this specification by a designer is a difficult
and error-prone task. On the other hand, approaches dedicated to the automatic
generation of compositions are not mature enough. An assisted approach seems
to be a good trade-off between complete automation and manual writing of the
composition specification. Clint will be extended to accept a partial specification
of the composition, point out composition issues, and propose possible solutions
or further message correspondences to complete this specification. We also plan
to extend validation techniques by connecting Clint to model-checking tools, such
as SPIN or CADP.

Acknowledgements. This work has been partially supported by the project
TIN2004-07943-C04-01 funded by the Spanish Ministry of Education and Sci-
ence (MEC), and project P06-TIC-02250 funded by the Andalusian local Gov-
ernment. We thank C. Joubert and E. Pimentel for their fruitful comments.

References

1. Clint - version 01 / September 2007. Available from J. Cámara’s Webpage.
2. S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romanovsky, and M. Tivoli. Ar-

chitecting Systems with Trustworthy Components, chapter Towards an Engineering
Approach to Component Adaptation. LNCS 3938. Springer, 2006.

3. A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adaptation.
Journal of Systems and Software, 74(1):45–54, 2005.

4. J. Cámara, G. Salaün, and C. Canal. Run-time Composition and Adaptation of
Mismatching Behavioural Transactions. In Proc. of SEFM’07. IEEE Computer
Society, 2007.

5. C. Canal, P. Poizat, and G. Salaün. Synchronizing Behavioural Mismatch in Soft-
ware Composition. In Proc. of FMOODS’06, LNCS 4037. Springer.

6. J. Cubo, G. Salaün, C. Canal, E. Pimentel, and P. Poizat. A Model-Based Approach
to the Verification and Adaptation of WF/.NET Components. In Proc. of FACS’07,
ENTCS. Elsevier, 2007. To appear.

7. J. Magee and J. Kramer. Concurrency: State Models & Java Programs. Wiley, 1999.
8. R. Mateescu, P. Poizat, and G. Salaün. Behavioral Adaptation of Component Com-

positions based on Process Algebra Encodings. In Proc. of ASE’07. IEEE Computer
Society, 2007.

9. H. R. Motahari Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati.
Semi-Automated Adaptation of Service Interactions. In Proc. of WWW’07. ACM
Press, 2007.


