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Abstract— We propose a technique for the synthesis of safety
controllers for switched systems using multi-scale abstractions.
To this end we build on a recent notion of multi-scale discrete
abstractions for incrementally stable switched systems. These
abstractions are defined on a sequence of embedded lattices
approximating the state-space, the finer ones being used only
in a restricted area where fast switching is needed. This makes
it possible to deal with fast switching while keeping the number
of states in the abstraction at a reasonable level. We present
a synthesis algorithm that exploits the specificities of multi-
scale abstractions. The abstractions are computed on the fly
during controller synthesis. The finest scales of the abstraction
are effectively explored only when fast switching is needed,
that is when the system approaches the unsafe set. We provide
experimental results that show drastic improvements of the
complexity of controller synthesis using multi-scale abstractions
instead of uniform abstractions.

I. INTRODUCTION

Symbolic approaches to control of hybrid systems based
on the use discrete abstractions have become quite popular
(see [9] and the references therein). The main advantage of
these approaches is that they offer the possibility to leverage
controller synthesis techniques developed in the area of
discrete-event systems [4]. A recent trend in symbolic control
is to use discrete abstractions that are related to the original
system by some approximate equivalence relationship such
as approximate bisimulation [6]. It has been shown that such
abstractions are computable for several classes of control
systems including incrementally stable nonlinear systems [8]
and switched systems [7]. These approaches are based on
sampling of time and space where the sampling parameters
must satisfy some relation in order to obtain abstractions
of a prescribed precision. Particularly, the faster the time
sampling, the finer the lattice approximating the state-space
has to be, resulting in abstractions with a large number of
states.

In [3], we introduced a notion of multi-scale discrete
abstraction that allows us to deal with fast time sampling
while keeping the number of abstract states at a reasonable
level. Following the self-triggered control paradigm [11], [2],
we assume that the controller has to decide the control input
and the duration during which it will be applied. Then, it
is natural to consider abstractions where transitions have
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various durations. For transitions of longer duration, it is
sufficient to consider abstract states on a coarse lattice. For
transitions of shorter duration, it becomes necessary to use
finer lattices. These finer lattices are effectively used only on
a restricted area of the state-space where fast time-sampling
is needed. The concept of approximately bisimilar multi-
scale abstractions has also been explored in [10] where the
multi-scale feature is used for accommodating locally the
precision of the abstraction while the time sampling period
remains constant. On the contrary, the approach presented
in [3] seeks for a uniform precision but varying time sam-
pling periods. In both works, the multi-scale abstractions
were used to synthesize suboptimal reachability controllers.

In this paper, we propose to use these multi-scale ab-
stractions for the synthesis of safety controllers for switched
systems. We present a synthesis algorithm that exploits
the specificities of multi-scale abstractions. The abstractions
are computed on the fly during controller synthesis and
the dynamics at the finest scales are explored only when
necessary. We provide experimental results that show drastic
improvements of the complexity of controller synthesis using
multi-scale abstractions instead of the uniform abstractions
defined in [7].

II. PRELIMINARIES

A. Incrementally stable switched systems

Definition 2.1: A switched system is a quadruple Σ =
(Rn, P,P, F ), where Rn is the state space; P = {1, . . . ,m}
is the finite set of modes; P is the set of piecewise constant
functions from R+ to P , continuous from the right and with
a finite number of discontinuities on every bounded interval
of R+; F = {f1, . . . , fm} is a collection of smooth vector
fields indexed by P .

A switching signal of Σ is a function p ∈ P . A piecewise
C1 function x : R+ → Rn is said to be a trajectory of Σ if it
is continuous and there exists a switching signal p ∈ P such
that, at each t ∈ R+ where the function p is continuous, x
is continuously differentiable and satisfies:

ẋ(t) = fp(t)(x(t)).

We will denote the point reached at time t ∈ R+ from the
initial condition x under the switching signal p by x(t, x,p)
or by x(t, x, p) if p is constantly equal to p ∈ P .

The results presented in this paper apply to switched
systems satisfying the incremental stability property (i.e. δ-
GUAS [1], [7]). Essentially, a switched system is incremen-
tally stable if all trajectories associated with the same switch-



ing signal converge asymptotically to the same reference tra-
jectory independently of their initial condition. Incremental
stability of a switched system can be characterized using
Lyapunov functions:

Definition 2.2: A smooth function V : Rn×Rn → R+ is
a common δ-GUAS Lyapunov function for Σ if there exist
K∞ functions1 α, α and κ > 0 such that for all x, y ∈ Rn,
for all p ∈ P :

α(‖x− y‖) ≤ V (x, y) ≤ α(‖x− y‖); (1)
∂V
∂x (x, y)fp(x) + ∂V

∂y (x, y)fp(y) ≤ −κV (x, y). (2)

As in [7], we will make the supplementary assumption
on the δ-GUAS Lyapunov function that there exists a K∞
function γ such that

∀x, y, z ∈ Rn, |V (x, y)− V (x, z)| ≤ γ(‖y − z‖). (3)

This assumption was shown to be not restrictive provided V
is smooth and we are interested in the dynamics of Σ on a
compact subset of Rn, which is often the case in practice.
In [7], it was proved that under the existence of common
δ-GUAS Lyapunov function V satisfying equation (3), it is
possible to compute discrete abstractions that approximate
the dynamics of Σ at any desired level of accuracy.

B. Approximate bisimulation

In this section, we present the notion of approximate
equivalence which will relate a switched system to the
discrete systems that we construct. We start by introducing
transition systems which allow us to model switched and
discrete systems in a common mathematical framework.

Definition 2.3: A transition system is a tuple T =
(Q,L, - , O,H, I) consisting of a set of states Q; a set of
labels or actions L; a transition relation - ⊆ Q×L×Q;
an output set O; an output function H : Q → O; a set of
initial states I ⊆ Q. T is said to be metric if the output set
O is equipped with a metric d, discrete if Q and L are finite
or countable sets.

The transition (q, l, q′) ∈ - will be denoted
q

l- q′, or alternatively q′ ∈ succl(q); this means that
the system can evolve from state q to state q′ under the
action l. An action l ∈ L belongs to the set of enabled
actions at state q, denoted enab(q), if succl(q) 6= ∅. The
transition system is said to be deterministic if for all q ∈ Q
and l ∈ enab(q), succl(q) has only one element. A trajectory
of the transition system is a finite sequence of transitions
σ = q0

l0- q1
l1- q2

l2- . . .
lN−1- qN . It is

initialized if q0 ∈ I . A state q ∈ Q is reachable if there
exists an initialized trajectory reaching q. The observed
behavior associated to a trajectory is the sequence of outputs
o0o1o2 . . . oN where oi = H(qi), for all i ∈ {0, . . . , N}.

Transition systems can describe the dynamics of switched
systems. Given a switched system Σ = (Rn, P,P, F ), we
define the transition system T (Σ) = (Q,L, - , O,H, I),

1A continuous function γ : R+ → R+ is said to belong to class K∞ if
it is strictly increasing, γ(0) = 0 and γ(r)→∞ when r →∞.

where the set of states is Q = Rn; the set of labels is L =
P × R+; the transition relation is given by

x
p,τ- x′ iff x(τ, x, p) = x′,

i.e. the switched system Σ goes from state x to state x′ by
applying the constant mode p for a duration τ ; the set of
outputs is O = Rn; the observation map H is the identity
map over Rn; the set of initial states is I = Rn. T (Σ) is
deterministic and metric when the set of outputs O = Rn
is equipped with the metric d(x, x′) = ‖x − x′‖. Note that
the state space of T (Σ) is uncountable. In the following, we
will compute discrete abstractions of T (Σ) in the sense of
approximate bisimulation, a system approximation relation-
ship introduced in [6].

Definition 2.4: Let Ti = (Qi, L,
i
- , O,Hi, Ii), with

i = 1, 2 be metric transition systems with the same sets of
labels L and outputs O equipped with the metric d. Let ε ≥ 0
be a given precision. A relation R ⊆ Q1 ×Q2 is said to be
an ε-approximate bisimulation relation between T1 and T2
if for all (q1, q2) ∈ R:
• d(H1(q1), H2(q2)) ≤ ε;
• ∀q1

l

1
- q′1, ∃q2

l

2
- q′2, such that (q′1, q

′
2) ∈ R;

• ∀q2
l

2
- q′2, ∃q1

l

1
- q′1, such that (q′1, q

′
2) ∈ R.

The transition systems T1 and T2 are said to be approxi-
mately bisimilar with precision ε, denoted T1 ∼ε T2, if:
• ∀q1 ∈ I1, ∃q2 ∈ I2, such that (q1, q2) ∈ R;
• ∀q2 ∈ I2, ∃q1 ∈ I1, such that (q1, q2) ∈ R.

If T1 is a system we want to control and T2 is a simpler
system that we want to use for controller synthesis, then T2
is called an approximately bisimilar abstraction of T1.

III. MULTI-SCALE ABSTRACTIONS FOR
SWITCHED SYSTEMS

Let Σ be a switched system and let us assume that the
switching in Σ is determined by a time-triggered controller
of time-period τ > 0. Then, the dynamics of Σ can be
described by the transition system Tτ (Σ) obtained from
T (Σ) by selecting the transitions that describe trajectories
of duration τ . In [7], an approach to compute approximately
bisimilar abstractions of Tτ (Σ) was presented, based on a
quantization of the state-space Rn which is approximated
by the lattice:

[Rn]η =

{
q ∈ Rn

∣∣∣∣ q[i] = ki
2η√
n
, ki ∈ Z, i = 1, ..., n

}
where q[i] is the i-th coordinate of q and η > 0 is a
state space discretization parameter. The resulting abstraction
Tτ,η(Σ) is discrete, its set of states and its set of actions are
respectively countable and finite. It is shown in [7] that under
the existence of a common δ-GUAS Lyapunov function and
equation (3), Tτ (Σ) and Tτ,η(Σ) are approximately bisimilar.
Given the time sampling parameter τ , to obtain a prescribed
precision ε, it is sufficient to choose η such that

η ≤ min
{
γ−1

(
(1− e−κτ )α(ε)

)
, α−1 (α(ε))

}
(4)



Particularly, it should be noted that given τ > 0 and ε > 0,
it is always possible to choose η > 0 such that equation (4)
holds. This essentially means that approximately bisimilar
discrete abstractions of arbitrary precision can be computed
for Tτ (Σ). However, the smaller τ or ε, the smaller η must be
to satisfy equation (4). In practice, for a small time sampling
parameter τ , the ratio ε/η can be very large and discrete
abstractions with an acceptable precision may have a very
large number of states (see e.g. [7]).

There are number of applications where the switching has
to be fast though this fast switching is generally necessary
only on a restricted part of the state space. For instance,
for safety controllers, fast switching is needed only when
approaching the unsafe set. In order to enable fast switching
while dealing with abstractions with a reasonable number
of states, one may consider discrete abstractions enabling
transitions of different durations. For transitions of long
duration, it is sufficient to consider abstract states on a
coarse lattice to meet the desired precision ε. As we consider
transitions of shorter durations, it becomes necessary to use
finer lattices for the abstract state-space. These finer lattices
are effectively used only on a restricted area of the state
space, where the fast switching is necessary. This allows us
to keep the number of states in the abstraction at a reasonable
level. This results naturally in a notion of multi-scale discrete
abstraction introduced in [3].

For that purpose, we change the control paradigm and
use self-triggered controllers [11], [2], where the controller
not only determines the mode of the switched system but
also the duration during which the mode remains active. We
assume that the controller can choose from a finite set of
durations ΘN

τ = {2−sτ | s = 0, . . . , N} that consists of
dyadic fractions of a time sampling parameter τ > 0 up to
some scale parameter N ∈ N. The dynamics of the switched
system is then naturally described by the transition system
TNτ (Σ) = (Q1, L,

1
- , O,H1, I1) where the set of states

is Q1 = Rn; the set of labels is L = P ×ΘN
τ ; the transition

relation is given by

x
p,2−sτ

1
- x′ iff x(2−sτ, x, p) = x′;

the set of outputs is O = Rn; the observation map H1 is the
identity map over Rn; the set of initial states is I1 = Rn.

The computation of a discrete abstraction of TNτ (Σ) can
then be done using the following approach. We approximate
the set of states Q1 = Rn by a sequence of embedded
lattices: for s = 0, . . . , N , let Qs2 = [Rn]2−sη , i.e.

Qs2 =

{
q ∈ Rn

∣∣∣∣ q[i] = ki
2−s+1η√

n
, ki ∈ Z, i = 1, ..., n

}
where η > 0 is a state space discretization parameter. Let
us remark that we have Q0

2 ⊆ Q1
2 ⊆ · · · ⊆ QN2 . By simple

geometrical considerations, we can check that for all x ∈ Rn
and s = 0, . . . , N , there exists q ∈ Qs2 such that ‖x− q‖ ≤
2−sη. Then, we can define the abstraction of TNτ (Σ) as
the transition system TNτ,η(Σ) = (Q2, L,

2
- , O,H2, I2),

where the set of states is Q2 = QN2 ; the set of actions
remains L = P ×ΘN

τ ; the transition relation is given by

q
p,2−sτ

2
- q′ iff q′ = arg min

r∈Qs
2

(‖x(2−sτ, q, p)− r‖).

If the minimizer r ∈ Qs2 is not unique, then one can choose
arbitrarily one of them. The set of outputs remains O = Rn;
the observation map H2 is the natural inclusion map from
QN2 to Rn, i.e. H2(q) = q; the set of initial states is I2 = Q0

2.
It is important to remark that all the transitions of duration

2−sτ end in states belonging to Qs2. This means that the
states on the finer lattices are only accessible by transitions
of shorter duration. Note that the transition system TNτ,η(Σ)
is discrete since its sets of states and actions are respectively
countable and finite. Also, if we only consider transitions
of duration τ , the dynamics of TNτ,η(Σ) coincides with that
of the uniform abstraction Tτ,η(Σ) defined in [7]. Both
transition systems TNτ (Σ) and TNτ,η(Σ) are deterministic. It
was proved in [3] that under the existence of a common δ-
GUAS Lyapunov function and equation (3), these transition
systems are approximately bisimilar:

Theorem 3.1: Consider a switched system Σ, time and
state space sampling parameters τ, η > 0, scale parameter
N ∈ N, and a desired precision ε > 0. Let us assume that
there exists a common δ-GUAS Lyapunov function V for Σ
such that equation (3) holds. If

η ≤ min
{

min
s=0...N

[
2sγ−1

(
(1− e−κ2

−sτ )α(ε)
)]
, α−1 (α(ε))

}
(5)

then TNτ (Σ) ∼ε TNτ,η(Σ).

It is interesting to note that given a time sampling pa-
rameter τ > 0 and a scale parameter N ∈ N, for all
desired precisions ε > 0, there exists η > 0 such that
equation (4) holds. This essentially means that approximately
bisimilar multi-scale abstractions of arbitrary precision can
be computed for TNτ (Σ).

IV. CONTROLLER SYNTHESIS USING
MULTI-SCALE ABSTRACTIONS

We illustrate the use of multi-scale abstractions for synthe-
sizing safety controllers. This problem was considered in [5]
based on the use of uniform discrete abstractions. We extend
the synthesis algorithm to multi-scale abstractions that are
computed on-the-fly, so as to provide a scalable trade-off
between precision and cost.

A. Problem formulation

Let us consider a system T = (Q,L, - , O,H, I)
and a safety specification QS ⊆ Q (which can easily be
obtained from a subset OS ⊆ O of safe outputs). For
simplicity, we assume that T is deterministic. This is satisfied
by the transition systems TNτ (Σ) and TNτ,η(Σ) defined in the
previous section.

Definition 4.1: A state q of T is controllable with respect
to a safety specifications QS if q ∈ QS and there exists
an infinite sequence of transitions of T starting in q and
remaining in QS . We denote the set of controllable states by
cont(QS).



Definition 4.2: A controller for T is a map S : Q → 2L

such that for all q ∈ Q, S(q) ⊆ enab(q). The system T
controlled by S is the system T/S = (Q,L,

S
. ,O,H, I)

where the transition relation is given by

q
l

S
. q′ ⇐⇒

[
(l ∈ S(q)) ∧ (q

l- q′)
]
.

The domain of S is the set dom(S) = {q ∈ Q | S(q) 6= ∅}.
A controller S is a safety controller if for all q ∈ dom(S):

1) q ∈ QS (safety);
2) ∀l ∈ S(q), succl(q) ∈ dom(S) (deadend freedom).
It is easy to show that for any safety controller S, we have

dom(S) ⊆ cont(QS). Given the set of controllable states
cont(QS), we can define a safety controller S∗ as follows:
for all q /∈ cont(QS), S∗(q) = ∅ and for all q ∈ cont(QS),

S∗(q) = {l ∈ enab(q) | succl(q) ∈ cont(QS)}.

In that case we have dom(S) = cont(QS). This safety
controller is maximal in the sense that any other safety
controller S satisfies S(q) ⊆ S∗(q), for all q ∈ Q. Let us
remark that the set cont(QS) and thus S∗ are computable for
our discrete abstractions. However, the larger the number of
states, the more expensive the computation. For that reason,
we want to exploit multi-scale abstractions to propose a more
efficient algorithm for the synthesis of safety controllers.

Let us consider that the set of labels of T is L = P ×ΘN
τ

as defined in the previous section. The lazy safety synthesis
problem consists in controlling a system so as to keep any
trajectory starting from some initial state in I within the safe
subset of states, while applying in each state a transition
of the longest possible duration for which safety can be
guaranteed. For that purpose we define priority relations
on the set of labels giving priority to transitions of longer
duration: for l, l′ ∈ L with l = (p, δ), l′ = (p′, δ′), l � l′ iff
δ ≤ δ′, l ≺ l′ iff δ < δ′ and l ∼= l′ iff δ = δ′. Given a subset
of labels L′ ⊆ L, we define

max�(L′) = {l′ ∈ L′ | ∀l ∈ L′, l � l′}.

Definition 4.3: A maximal lazy safety controller for T and
QS is a controller S such that all controllable states in I are
in dom(S), and for all states q ∈ dom(S), q is reachable in
T/S and the following conditions hold:

1) q ∈ QS (safety);
2) ∀l ∈ S(q), succl(q) ∈ dom(S) (deadend freedom);
3) if l ∈ S(q), then for any l ≺ l′, succl′(q) /∈ cont(QS)

(laziness);
4) if l ∈ S(q), then for any l ∼= l′, l′ ∈ S(q) iff

succl′(q) ∈ cont(QS) (maximality).
It is clear from conditions 1) and 2) that S is a safety

controller. The controller S represents a trade-off between
maximal permissiveness and efficiency, in the sense that
it contains the same initial states as the maximal safety
controller; on the other hand, in each state, the enabled transi-
tions are those of maximal duration for which controllability
is preserved.

Theorem 4.4: There exists a unique maximal lazy safety
controller.

Proof: We start with existence. Let S̄∗ be the controller
defined from the maximal (non-lazy) safety controller S∗ as
follows: for all q ∈ Q, S̄∗(q) = max� S∗(q). It is easy
to check that dom(S∗) = dom(S̄∗) and that for all q ∈
dom(S̄∗), conditions 1) to 4) of Definition 4.3 hold for S̄∗.
Now let S be the controller defined from S̄∗ by S(q) =
S̄∗(q) if q is reachable in T/S̄∗ and S(q) = ∅ otherwise. It is
clear that the reachable states in T/S̄∗ and T/S are the same.
Hence, for all q ∈ dom(S), q is reachable in T/S. Moreover,
conditions 1) to 4) of Definition 4.3 hold for S. Let q ∈ I
be controllable, then q ∈ dom(S∗) = dom(S̄∗). Since any
initial state is reachable, we have S(q) = S̄∗(q) 6= ∅ and
q ∈ dom(S).

We now prove uniqueness. Let S1 and S2 be two maximal
lazy safety controllers and assume that there exists q ∈ Q
such that S1(q) 6= S2(q). If both S1(q) and S2(q) are not
empty, we can assume without loss of generality that there
exists l1 ∈ S1(q) such that l1 /∈ S2(q). Then, let l2 ∈ S2(q).
If l1 ≺ l2 then condition 3) does not hold for S1 since
succl2(q) ∈ dom(S2) ⊆ cont(QS). If l2 ≺ l1 then condition
3) does not hold for S2 since succl1(q) ∈ dom(S1) ⊆
cont(QS). If l1 ∼= l2, then condition 4) does not hold for
S2 since succl1(q) ∈ dom(S1) ⊆ cont(QS). In all the cases
one of the controllers is not a maximal lazy safety controller.

If one of S1(q) and S2(q) is empty, we can assume
without loss a generality that S1(q) 6= ∅ and S2(q) = ∅.
q ∈ dom(S1) ⊆ cont(QS) therefore q cannot be in I
otherwise we would have S2(q) 6= ∅. Since q ∈ dom(S1), q
is reachable in T/S1. Let us consider the initialized trajectory
of T/S1, q0

l0- q1
l1- . . .

lN−1- qN = q. q0 ∈ dom(S1)
is a controllable initial states and therefore S2(q0) 6= ∅. Then,
there exists i ∈ {0, . . . , N − 1} such that S2(qi) 6= ∅ and
li /∈ S2(qi) (otherwise we would have S2(q) 6= ∅). Therefore,
there exists qi ∈ Q, such that S1(qi) 6= S2(qi) and both
S1(qi) and S2(qi) are not empty. We have already proved
that in this case one of the controllers is not a maximal lazy
safety controller.

B. Discrete controller synthesis for multi-scale abstractions

Algorithm 1 computes the safety controller for given T ,
and QS . It works as follows. The for loop in line 5 iterates
over all states q to be (re)visited. Initially, this is the set
of initial states. The repeat loop in line 8 iterates over the
decreasing durations i = τ, ..., 2−Nτ in order to explore
durations of longer durations first (line 9). The for loop in
line 10 iterates over all modes p and computes the successor
q′ under transition a = (p, 2−iτ). If q′ is safe (line 13) then
the transition is added to the controller. If in addition, q′

has not been visited yet (line 16), then q′ is added to the
set of states to be visited. After termination of the repeat
– until loop of lines 8 – 23, if all modes and durations
have been explored but none leads to a safe state, then q
is removed from the set of safe states QS , the states whose
only successor is q are scheduled to be revisited, and the
transitions from and to q are removed from the controller.
Finally the obtained controller is returned.



Algorithm 1 Safety synthesis.
Input: System T = (Q,L,→, O,H, I), safe state space QS ,
priority order � ⊆ L× L.
Output: controller S : Q→ 2L.
Auxiliary variables: explored states X , states todo to be
(re)visited, map explored : X → 2L, maximal ⊆ L,
Boolean found succ.
Invariant: todo ⊆ X ⊆ QS ⊆ Q.

1: (todo,X,→S) := (I, I, ∅);
2: for q ∈ I do
3: explored(q) := ∅
4: end for
5: for q ∈ todo do
6: todo := todo \ {q};
7: found succ := false;
8: repeat
9: maximal := max�

(
L \ explored(q)

)
;

10: for a ∈ maximal do
11: explored(q) := explored(q) ∪ {a};
12: q′ := succa(q); {q a→ q′}
13: if q′ ∈ QS then
14: →S :=→S ∪ {(q, a, q′)};
15: found succ := true;
16: if q′ /∈ X then
17: X := X ∪ {q′};
18: todo := todo ∪ {q′};
19: explored(q′) := ∅
20: end if
21: end if {ignore a if successor is unsafe}
22: end for
23: until found succ ∨ explored(q) = L
24: if (explored(q) = L)∧({a ∈ L | ∃q′ : q

a→S q′} = ∅)
then {revisit possibly unsafe state q}

25: X := X \ {q};
26: QS := QS \ {q};
27: todo := todo ∪ {q′ ∈ X | ∀(a, q′′) : (q′

a→S q′′ ⇒
q′′ = q)}; {revisit predecessors of q whose only
successor is q}

28: →S :=→S \ {(q1, a, q2) | a ∈ L ∧ (q1 = q ∨ q2 =
q)}

29: end if
30: end for
31: return {(q, `) | ∃q′ : q

`→S q′)}

Algorithm 1 terminates: the outer loop iterates over todo
to which each state q from the finite set QS is added at most
once when q is added to X (line 18), and at most once for
each successor that is removed from QS (line 27); the set
QS is decreasing. The inner repeat loop iterates in the worst
case over the finite set of transitions issued from q.

Let us remark that the multi-scale abstraction is computed
on the fly during the synthesis algorithm. Therefore, the
dynamics at the finer scales is only explored when necessary.
This allows us to synthesize safety controllers at a reduced
computational cost as shown in the following section.

V. EXPERIMENTAL RESULTS

For illustration purpose, we apply our approach to a boost
DC-DC converter. It is a switched system with modes, the
two dimensional dynamics associated with both modes are
affine of the form ẋ(t) = Apx(t)+b for p = 1, 2 (see [7] for
numerical values). It can be shown that it is incrementally
stable and thus approximately bisimilar discrete abstractions
can be computed. We consider the problem of keeping the
state of the system in a desired region of operation given by
the safe set OS = [1.15, 1.55]× [5.45, 5.85].

In the following, we use approximately bisimilar abstrac-
tions to synthesize safety switching controllers. We set the
desired precision of abstractions to 0.1. For the sake of
comparison, we choose to work both with uniform and multi-
scale abstractions. The uniform abstractions Tτi,ηi(Σ) are
computed according to [7] for time sampling parameters
τ1 = 1 and τ2 = 0.5. The state-space sampling parameters
are chosen according to equation (4), that is η1 = 5×10−4

√
2

and η2 = 2.5 × 10−4
√

2, respectively. We also use multi-
scale abstractions TNτ,η for parameters τ = 2, η = 10−3

√
2

and N ∈ {1, 2} chosen according to Theorem 3.1. This
corresponds to transitions of possible duration Θ1

τ = {2, 1}
and Θ2

τ = {2, 1, 0.5}. Hence, the controllers synthesized
using T 1

τ,η and T 2
τ,η are to be compared with those of Tτ1,η1

and Tτ2,η2 , respectively.
Figure 1 depicts the controllers for Tτ1,η1 and Tτ2,η2 , as

well as the controllers computed by Algorithm 1 for T 1
τ,η and

T 2
τ,η . Table I details the experimental results obtained for the

synthesis of the aforementioned set of controllers. Looking
at the results, it is worth emphasizing that in general, there is
a remarkable reduction in the overall time used to compute
the controller using multi-scale abstractions with respect to
the use of uniform ones (up to a 84% improvement between
Tτ2,η2 and T 2

τ,η). However, this reduction in computation
time is obtained for the finest level of resolution (on the
contrary, the improvement is close to a 20% when we
compare the use of abstractions Tτ1,η1 and T 1

τ,η). This is
due to the fact that the size of uniform abstractions grows
exponentially with higher resolutions, whereas the process
that we use with multi-scale abstractions bounds this growth
by refining the abstraction only in some specific regions of
the state-space (we have observed a reduction in the size
of abstractions of 38% and 74% for two and three resolu-
tion levels, respectively). Interestingly, the aforementioned
reduction in computation time and abstraction size does
not affect the performance of the multi-scale controllers,
which yield a ratio of controllable initial states2 over the
safety specification comparable to that of their uniform
counterparts.

Furthermore, the resulting multi-scale controllers have a
lower switching frequency, since they apply shorter transition
durations only when they are necessary (the duration of about
30% of transitions in the controllers obtained both from T 1

τ,η

and T 2
τ,η is 2 seconds). Let us remark that synthesizing a

2The ratio of controllable initial states for a a controller S : Q→ 2L and
a system T = (Q,L,→, O,H, I) is computed as |{q ∈ I|S(q) 6= ∅}|/|I|.



Fig. 1. Top: safety controllers for uniform abstractions Tτ1,η1 (Σ) (left) and Tτ2,η2 (Σ) (right). Bottom: safety controllers for multi-scale abstractions
T 1
τ,η(Σ) (left) and T 2

τ,η(Σ) (right) computed using Algorithm 1. (dark gray: mode 1, light gray: mode 2, medium gray: modes 1 and 2).

Uniform abstractions Tτ,η(Σ) Multi-scale abstractions TNτ,η(Σ)
τ = 1s τ = 0.5s N = 1, τ = 2s N = 2, τ = 2s

η = 5× 10−4
√

2 η = 2.5× 10−4
√

2 η = 10−3
√

2 η = 10−3
√

2

controllability ratio 85% 94% 85% 94%
computation time 29s 253s 23s (-20%) 40s (-84%)
abstraction size [103 states] 160 641 100 (-38%) 168 (-74%)
transition durations 1s: 100% 0.5s: 100% 2s: 32% / 1s: 68% 2s: 29% / 1s: 67% / 0.5s: 4%

TABLE I
COMPARISON OF EXPERIMENTAL RESULTS FOR UNIFORM AND MULTI-SCALE ABSTRACTIONS FOR THE BOOST DC-DC CONVERTER.

controller for the safety specification used in this problem
based on an uniform abstraction with τ = 2s leads to an
empty controller.

VI. CONCLUSION

In this paper, we have proposed the use of multi-scale,
approximately bisimilar discrete abstractions for the compu-
tation of controllers, applying them to the specific case of
safety problems. In particular, our experimental results have
shown that we can achieve a remarkable reduction in the
computation time of such controllers in comparison with the
use of uniform abstractions, while preserving similar levels
of performance. Future work will deal with the application of
multi-scale abstractions to other kinds of control problems.
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