
Mary Shaw Abstractions for Software Architecture and Tools to Support Them 1

Abstractions for Software Architecture
and Tools to Support Them

 Mary Shaw, Robert DeLine, Daniel V. Klein,
Theodore L. Ross, David M. Young, Gregory Zelesnik

Computer Science Department
Carnegie Mellon University

Pittsburgh PA
and various other current affiliations1

Version of March 8, 1995

Abstract

Architectures for software use rich abstractions and idioms to describe system components,
the nature of interactions among the components, and the patterns that guide the composition
of components into systems. These abstractions are higher-level than the elements usually
supported by programming languages and tools. They capture packaging and interaction is-
sues as well as computational functionality. Well-established (if informal) patterns guide ar-
chitectural design of systems. We sketch a model for defining architectures and present an
implementation of the basic level of that model. Our purpose is to support the abstractions
used in practice by software designers. The implementation provides a testbed for experi-
ments with a variety of system construction mechanisms. It distinguishes among different
types of components and different ways these components can interact. It supports abstract
interactions such as data flow and scheduling on the same footing as simple procedure call. It
can express and check appropriate compatibility restrictions and configuration constraints. It
accepts existing code as components, incurring no runtime overhead after initialization. It
allows easy incorporation of specifications and associated analysis tools developed elsewhere.
The implementation provides a base for extending the notation and validating the model.

Keywords: Software architecture, architecture description language, software system
organization, architectural abstraction, software engineering

1Mary Shaw holds a joint appointment with the Software Engineering Institute, Carnegie Mellon
University. Daniel V. Klein is currently with LoneWolf Systems, Pittsburgh PA. Theodore L.
Ross is currently with Digital Equipment Corporation, Littleton MA. David M. Young is currently
with Madeira Software, Inc., Beverly MA. Electronic mail contact address:
mary.shaw@cs.cmu.edu

IEEE Transactions on Software Engineering, vol. 21, no. 4, 1995, pp. 314-335

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 2

Table of Contents

1 . Introduction 3

2 . Model and Notation 8
2.1. Components and Connectors 9
2.2. Abstraction and Encapsulation 11
2.3. Types and Type Checking 12
2.4. Accommodating Analysis Tools 13

3 . UniCon: Language for Universal Connector Support 1 3
3.1. Semantics 14

3.1.1. Components 15
3.1.1.1. Built-in Component Types 18
3.1.1.2. Implementation of Primitive Components 21
3.1.1.3. Implementation of Composite Components 22

3.1.2. Connectors 23
3.1.2.1. Built-in Connector Types 25
3.1.2.2. Implementation of Primitive Connectors 27

3.2. Graphical Notation 28
3.3. Textual Notation 29

3.3.1. Major Constructs 29
3.3.2. Primitive Components 30
3.3.3. Composite Components 31
3.3.4. Primitive Connectors 33
3.3.5. Property Lists 34

3.4. Populating the Space of Elements 34
3.5. Incorporating Analysis Tools 35

4 . Implementation 3 9
4.1. Procedure Call and Global Data Access 39
4.2. Unix Pipes and Files 40
4.3. Remote Procedure Call 41
4.4. Real-Time Scheduling 42

5 . Experience and Analysis 4 3
5.1. Experience 43
5.2. Performance 45
5.3. Conclusion 46

Appendix: 4 8

References 4 8

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 3

1 . Introduction

Software engineers often describe the “architectures” of their systems. These descriptions address
high-level aspects of the systems such as the overall organization, the decomposition into compo-
nents, the assignment of functionality to components, and the way the components interact. These
architectural descriptions often use box-and-line diagrams and phrases such as “pipe-and-filter
system” and “client-server model”.

While architectural descriptions use high-level abstractions, the corresponding implementations are
written in conventional programming languages. However, composing a system from subsystems is a
substantially different activity from programming the underlying algorithms and data structures.
Hardware designers confront the same situation; they recognize a number of distinct design levels,
each with its own design issues, models, notations, componentry, and analysis techniques [Bell &
Newell 71]. In the same way, different levels of software design require different kinds of com-
ponents, different ways of composing components, different design issues, and different kinds of
reasoning. The vocabulary gap between requirements and programming is substantial. Filling the
gap requires better models and notations for the intermediate step. This is the goal of the emerging
field of software architecture.

The architecture of a software system defines that system in terms of components and of interactions
among those components. In addition to specifying the structure and topology of the system, the
architecture shows the intended correspondence between the system requirements and elements of the
constructed system. It can additionally address system-level properties such as capacity, throughput,
consistency, and component compatibility. Architectural models clarify structural and semantic
differences among components and interactions. Architectural definitions can be composed to define
larger systems. Elements are defined independently so they can be re-used in different contexts.
The architecture establishes specifications for individual elements to be written in a conventional pro-
gramming language. A number of commonly-used patterns, or idioms, are in widespread informal
use; these architectural styles can be captured as general templates for families of related systems.
This holds particular promise for domain-specific systems. [Garlan & Shaw 93, Mettala & Graham
92, Perry & Wolf 92]

Our primary considerations here are supporting architectural abstractions, localizing and codifying
the ways components interact, and distinguishing among the various packagings of components that
require different forms of interaction. Our focus is largely pragmatic. Our first concern has been to
identify, classify, and support a variety of components and their connections. We will refine the
notation and develop a formal base over time.

A sound basis for software architecture promises benefits for both development and maintenance.
Design should benefit from improved abstractions, notations, and analysis. Architectural definitions
should help provide good specifications for programming activities. Since the architectural def-
inition also serves as the specification for system build, the specifications and code will be less likely
to diverge. Maintenance should benefit in two ways. First, about half of maintenance effort is dedi-
cated to understanding the system in preparation for making changes; explicit definition of the ar-
chitecture should reduce this cost. Second, system architectures degrade over time; carrying the
architectural definition into maintenance should reduce this tendency toward degradation.

Additional development benefits should accrue through better information to guide software reuse.
Reuse is currently impeded by differences in component packaging. For example, a given func-

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 4

tionality might be packaged as a procedure, a communicating process, an object, or a filter; it might
interact with other components by calls, message-passing, method invocation, or shared data. These
differences in packaging are recognized only informally and are not supported by programming
languages and tools; neither formal nor informal guidance shows when and how to use them. As a
result, it is often unclear whether components with compatible functionality will actually be able to
interact properly. Documenting a system’s structure and properties in a rigorous way has obvious
advantages for maintenance. Much of the time spent on maintenance goes to understanding the
existing code; this effort should be reduced substantially if the original design structure is captured
clearly and explicitly. In addition, retaining the designer’s intentions about system organization
should help maintainers preserve the system’s design integrity.

A growing community of researchers is focusing on software architecture. There has been long-
standing interest in particular classes of architectures such as objects (focused by the OOPSLA
conference), pipelines (focused by the USENIX conference), and client-server systems (a subject of
intense attention in the commercial data processing arena). Early attention to the variety of idiomatic
patterns of system organization and the possibility of organizing this knowledge systematically [Shaw
88, Perry & Wolf 92, Boehm & Scherlis 92, Garlan & Shaw 93] have led to enough activity to sustain
workshops on architectural design [Barstow & Wolf 93], software design with strong participation
from architecture [Lamb 95], patterns for design [PLoP 94], and interface definition languages [Wing
94]. Software architecture emerged as a key theme at a recent workshop on directions in software
engineering [Habermann & Tichy 92]. A major effort to gain design power for specific kinds of
problems addresses domain-specific software architectures (DSSAs) in several specific domains
[Mettala & Graham 92, Hayes-Roth & Tracz 93]. Formalizations are beginning to emerge [Allen &
Garlan 94a,b]. As a natural consequence, languages for describing architectures are emerging [Dean
& Cordy 93, Rapide 93].

The need for a notation to describe how subsystems written in typical programming languages
connect to form larger systems is not a new concern. In 1975, DeRemer and Kron [DeRemer &
Kron 76] argued that creating program modules and connecting them together to form larger struc-
tures were distinct design efforts; they created the first module interconnection language (MIL) to
support the connection effort. In an MIL notation, modules import and export resources, which are
named elements such as type definitions, constants, variables, and functions. Compilers for MILs
ensure system integrity with intermodule type checking: they check that if one module uses a
resource that another provides, the types of the resources match; that if a module declares it provides
a resource, it actually does; that if a module uses a resource, it has access to that resource; and so on.
Since DeRemer and Kron’s MIL, MILs have been developed for specific languages, like Mesa
[Mitchell et al 79] and Ada [Campos & Estrin 78], and have provided a base from which to support
software construction [Thomas 76], version control [Cooprider 79], system families [Tichy 79], and
dynamic configuration [Magee et al 89]. Enough examples are available to develop models of the
design space [Perry 87, Prieto-Diaz & Neighbors 86].

These early module interconnection languages require considerable prior agreement between the
developers of different modules. For example, they assume that simple name matching can be used to
infer inter-module interaction, that all modules are written in the same language, that all modules are
available during system construction, and that module interfaces describe the other modules with
which they interact. Newer work has begun to soften these restrictions. In the Darwin language,
modules can be dynamically instantiated and bound at runtime [Magee et al 93]. Polygen [Callahan
& Purtilo 91] augments a module interconnection language with an inference engine that deduces
from a user-defined set of rules how (or whether) a system can be integrated from set of modules.

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 5

These modules can be implemented in multiple programming languages, and the machinery needed
to connect them can be richer than the usual procedure linkage, for example, a software bus [Purtilo
90]. This kind of system requires expanding the notion of a MIL to include specifics about a
module's implementation, such as its programming language, its hardware/operating system platform,
and the communication media needed to access it; the resulting richer notation has been termed a
module interconnection formalism (MIF). To build truly composable systems we must allow flexible,
high-level connections between existing systems in ways not foreseen by their original developers.
Essentially independently, developers of “open” software products have designed interchange rep-
resentations such as PICT (line drawings), RTF (formatted text), SYLK (spreadsheet layouts), and MIF
(formatted text) to allow distinct products to interact by data interchange. Although these were
originally static, newer developments such as CORBA, OLE, and OpenDoc (all for objects) support
dynamic sharing.

Systems often exhibit an overall style that follows a well-recognized, though informal, idiomatic
pattern. Garlan and Shaw survey half a dozen of these patterns and illustrate their use in case studies
[Garlan & Shaw 93]. They identify pipes and filters, data abstractions or objects, implicit invocation,
hierarchical layers, repositories, and interpreters as a useful (though incomplete) set of well-known
patterns, or styles, of system organization. These styles differ both in the kinds of components they
use and in the way those components interact with each other. As advocates of various of these
architectures explain, adherence to the rules of the style enhances both software development and
subsequent maintenance.2 The rules of the style usually restrict how to package components—e.g.,
as procedures, objects, or filters. As a result, components may not be usable in all styles; code may
not reusable because its interface makes incompatible assumptions. In Unix, for example, the func-
tionality of “sort” is available both in the form of a filter and in the form of a procedure.

The remainder of this paper is organized as follows: Section 2 introduces our model of software ar-
chitecture and its notation; Section 3 describes UniCon, an initial language for implementing the
model; Section 4 highlights its implementation; Section 5 describes our experience with UniCon.

caps shifter

req-data

merge sorter

File

Filter

Pipe

Figure 1. Pipe-and-filter example: the KWIC indexer.

We will use three examples throughout the paper. Although architecture diagrams often do not make
visual distinctions among the interactions they depict, here we use different markings for different
types of connections. The first example, shown in Figure 1, is a Unix-style pipe-and-filter system
built from both filters and files, with the wrinkle that the pipeline merges two streams—a configura-
tion that is difficult or impossible to describe in most shells. The system implements a KWIC
(keyword in context) indexer; we have used a very similar task as a class exercise in a software ar-

2However, the advocates often neglect to mention that different architectures are appropriate in
different situations. Choosing the most appropriate architecture for a given problem (or domain)
remains an open problem.

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 6

chitecture class [Garlan & Shaw 94]. The challenge of this example is to make complex topologies
as easy to describe as simple ones.

gatherer sorter reverser

rev

stk lib

Procedure Call
and Shared Data

Module

Module Implements a Filter

Figure 2. Heterogeneous implementation of a pipeline using both pipes and procedures. The
upper diagram is the high-level view of the system, a simple pipeline. The lower diagram shows

the implementation of the right-most component in the upper diagram.

The second example, shown in Figure 2, combines a pipe-and-filter architecture with a conventional
procedural implementation of one of the filters. The challenge of this example is to compose
architectural descriptions and to establish the correspondence between the abstraction of a pipeline
and its implementation as calls on system procedures.

client server

Remote Procedure Call

Schedulable Process

Real-Time Scheduler

Figure 3. Real-time client-server system with two schedulable tasks sharing a
computing resource. The tasks also interact via remote procedure call.

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 7

The third example, shown in Figure 3, involves coordinating real-time tasks. A simple periodic real-
time system has a number of tasks that must run on specified schedules. More challenging
scheduling problems arise when tasks interact. We use an example with two schedulable tasks that
interact through remote procedure calls. Based on a system timer, the client must periodically per-
form computations which involve calling upon services provided by the server; correctness requires
that these events take place at specific times. The challenge of this example is to incorporate an
external analysis tool that determines the legality of the configuration (especially to make guarantees
about schedulability) and to convert the code for the tasks into schedulable processes that run on a
real-time operating system.

2 . Model and Notation

This section describes an informal model for an architectural description language. The language is
intended to aid designers in first defining software architectures using abstractions they find useful
and then making a smooth transition to code. Our long-term objective is to fully elaborate this
model and to support it with notation and tools. Currently, we are more strongly motivated by
practical utility of the model than by formal foundations. At present, the model provides a frame-
work for understanding our initial implementation, which is described in Section 3.

The model addresses several issues in novel ways:

• It supports abstraction idioms commonly used by designers—for example, explicitly
distinguishing different types of elements and providing type-specific analysis support.

• It specifies packaging properties as well as functional properties of components—for
example, distinguishing clearly between functionality delivered in the form of a filter from
functionality delivered in the form of a procedure.

• It provides an explicit, localized home, called a connector, for information about the rules
for component interactions, such as protocols, interchange representations, and specifications
of data formats for communication.

• It defines an abstraction function to map from code or lower-level constructs to higher-level
constructs. This is similar to Hoare’s technique for abstract data types [Hoare 72].

• It is open with respect to externally-developed construction and analysis tools. It supports
collection and delivery of relevant information to tool and return of results from the tool.

Software system composition involves different tasks from writing modules: the system designer
defines roles and relationships rather than algorithms and data structures. These concerns are suf-
ficiently different to require a separate language. The architectural language must support system
configuration, independence of entities (hence reusability), abstraction, and analysis of properties
ranging from functionality to security and reliability [Shaw & Garlan 93]. The model must be
supported by a notation.

2.1. Components and Connectors

Systems are composed from identifiable components and connectors of various distinct types. The
components interact in identifiable, distinct ways. Components roughly correspond to compilation
units of conventional programming languages and other user-level objects such as files. Connectors
mediate interactions among components; that is, they establish the rules that govern component in-
teraction and specify any auxiliary implementation mechanism required. Connectors do not in gen-
eral correspond individually to compilation units; they manifest themselves as table entries, buffers,

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 8

instructions to a linker, dynamic data structures, sequences of system calls embedded in code,
initialization parameters, servers that support multiple independent connections, and the like. During
system design, it is important to work with good abstractions for interaction without concern for
whether their implementations are localized. It is helpful to think of the connector as defining a set
of roles that specific named entities of the components must play.

Our model thus describes software systems in terms of two kinds of distinct, identifiable elements:
components and connectors. Each of the two elements has a type, a specification, and an imple-
mentation. The specification defines the units of association used in system composition; the im-
plementation can be primitive or composite. Figure 4 suggests the essential character of the model.

Specification

Implementation

Component

Interface

Implementation

Connector

Protocol

Implementation

Type Component Type Connector Type

Unit of association Player Role

Element

Figure 4: Gross structure of an architecture language.

Components are the locus of computation and state. Each component has an interface specification
that defines its properties. These properties include the component's type or subtype (e.g. filter,
process, server, data storage), functionality, guarantees about global invariants, performance char-
acteristics, and so on. The specific named entities visible in a component’s interface are its players.
The interface includes the signature, functionality, and interaction properties of its players.

Connectors are the locus of definition for relations among components. They mediate interactions
but are not “things” to be “hooked up;” rather, they provide the rules for hooking-up. Each con-
nector has a protocol specification that defines its properties. These properties include its type or
subtype (e.g. remote procedure call, pipeline, broadcast, shared data representation, document ex-
change standard, event), rules about the types of interfaces it works with, assurances about the in-
teraction, commitments about the interaction such as ordering or performance, and so on. The
specific named entities visible in a connector’s protocol are roles to be satisfied. The interface in-
cludes rules about the players that can match each role, together with other interaction properties.

Components may be either primitive or composite. Primitive components may be implemented as
code in a conventional programming language, shell scripts of the operating system, software de-
veloped in an application such as a spreadsheet, or other means external to the architectural de-
scription language. Composite components define configurations in a notation independent of
conventional programming languages. This notation must be able to identify the constituent com-
ponents and connectors, match the players of components with roles of connectors, and check that
the resulting compositions satisfy the specifications of both the components’ interfaces and the
connectors’ protocols.

Similarly, connectors may be either primitive or composite. They are of many kinds: shared data
representations, remote procedure calls, data flow, document exchange standards, standardized
network protocols, etc. The connectors derived directly from programming languages are typically
asymmetric with two complementary roles: a procedure has a definer and multiple callers; data has an

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 9

owner and multiple users; a simple data stream has one producer and one consumer. However, other,
more abstract connectors may be symmetric, and their roles may be more numerous and more
specific: in broadcast communication, all participants may be alike; in some event systems any
component may raise or respond to any event. The usual import/export or provides/requires relation
is too restrictive to express the relations used in practice—it fails to expose important distinctions. If
rich, abstract connectors are to be defined, the architectural notation must be able to express complex
interaction properties. These might be as diverse as

• guarantees about delivery of packets in a communication system;

• ordering restrictions on events using traces or path expressions;

• incremental production/consumption rules about pipelines;

• the distinction between the roles of clients and servers;

• parameter matching and binding rules for conventional procedure calls;

• restrictions on parameter types that can be used for remote procedure calls; and so on.

Primitive connectors may be implemented in a number of ways: as built-in mechanisms of pro-
gramming languages (e.g., procedure calls or shared data); as system functions of the operating
system (e.g., certain kinds of message passing); as library code in conventional programming lan-
guages (e.g., X/Motif); as shared data (e.g., Fortran COMMON or Jovial COMPOOL); as entries in task
or routing tables; as a combination of library procedures and a single independent process for the
connector (e.g., certain kinds of communication services); as interchange formats for static data (e.g.,
RTF); as initialization parameters (e.g., event period and process priority in a real-time operating
system) and probably in a variety of other ways. Composite connectors may also appear in these
diverse forms; we need (but do not yet have) ways to define them as well.

The example of Figure 2, heterogeneous implementation of a pipeline, uses different types of com-
ponents and connectors. It also shows a composite implementation of one of the filters.

The remainder of this section deals with three issues of particular interest for general-purpose archi-
tectural tools: abstraction and encapsulation (Section 2.2), the appropriate analog for types (Section
2.3), and the ability to provide access to externally-developed tools (Section 2.4).

2.2. Abstraction and Encapsulation

For a composite element, the implementation part consists of

• a parts list (components and connectors)

• composition instructions (association between roles and players)

• abstraction mapping (relation between internal players and players of the composite)

• other related specifications (detailed properties of the parts and compositions).

This localizes and encapsulates information about the system structure rather than distributing it
around the system in import/export statements. Since composition information is localized, global
properties such as restrictions on topology or types of elements may be checked. Since the ab-
straction mapping is explicit, we have the opportunity to allocate responsibility for the code correctly
implementing higher-level connectors. Further, the composition instructions make the matching of

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 10

players and roles explicit, so we can break free of name matching as the sole means of making
connections, as shown in Section 3.3.3, Program 4.

Common system-composition idioms, such as pipeline, client-server, or blackboard, can be defined as
idiomatic patterns, or styles, of components and connectors. These patterns describe the types of
components and connectors that can be used and may constrain the interconnection topologies.
Indeed, some such styles (e.g., pipe-and-filter) are described primarily in terms of the prescribed
form for communication, data sharing, or other interaction. In practice, the rules for these styles are
usually implicit. The combination of localized definitions and higher-level elements makes it
possible to formalize rules for styles [Abowd et al 93, Allen & Garlan 94a].

Abstract data types rely on an abstraction function to show the correspondence between the internal
representation of a type and the abstract view that the user (and the specification) takes [Hoare 72].
For software architectures, abstractions are required to implement higher-level components in terms
of lower-level ones. When a component or connector is not directly implemented by a programming
language, its definition must explain how the abstract properties will be implemented. This might
take the form of a manual or informal guidance. Even better, it could be a code template, an
automated generator, or a formalization. No matter how it is represented, the definition must set out
the programmer’s responsibility. When a number of components are connected to form a larger
component, the players of the defined unit may be more abstract than the players of the
implementation. In that case, the definition must explicitly indicate the correspondence among one
or more external player (abstraction), one or more players of the constituent components, and the
implementation rule. This is the abstraction mapping of the component. Similarly, abstraction
mappings will be required for composite connectors. This differs from data abstraction chiefly in
that it maps not only data to an abstract value but rather data plus functions to a set of abstract player
types.

2.3. Types and Type Checking

A problem similar to type checking in a programming language arises at four points in an architec-
tural language. Two of these appear in the preceding discussion: the types of components and of
connectors and their use in showing adherence to a style. As with any type system, types for com-
ponents and connectors express the designer’s intent about how to use the element properly and are
most useful when the language checks them. The types for connectors and components are not
merely enumerations of unrelated items; some are closely related to others. Architectural types de-
scribe expected capabilities and limit both what can appear in the construct’s specification and the
legitimate ways to use the construct. Examination of real systems shows that type hierarchies of this
sort are useful. For example, there are many kinds of memories (components) and many kinds of
event systems (connectors). Defining type structures for these elements requires the creation of tax-
onomies to catalog and structure the type variations. This is part of establishing a full model for
architectural composition.

The third place where type checking appears is at the actual point of associating a component’s
players with a connector’s roles. Each of the named entities in the interfaces and protocols must have
enough type information and other specification to determine whether the connector definition
allows the components to be associated as requested. Furthermore, a component may be used dif-
ferently by different kinds of connectors. For example, a client might be indifferent to whether its
servers are dedicated, shared, or distributed. An abstract pipe may be able to connect both filters and
files (but not processes that share data directly). We must therefore support flexible associations

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 11

between players and roles. For connectors such as procedure call that correspond directly to
language constructs, this corresponds to the checks a linker may make. However, for richer, more
abstract connectors the checks are more sophisticated.

The fourth opportunity for type-like checking arises when more than one architectural style is used
in designing a single system. This problem also resembles that of reconciling multiple views. A
comparison of architectures for a single problem [Shaw 95] explores this issue.

Components and connectors must be reusable in different settings, so it’s important to deal reason-
ably with associations that are slightly mismatched. Common examples include mismatches between
the order and types of a library procedure’s arguments and those of the procedure intended to call it;
remapping data formats to support sharing; and the subtle differences between remote procedure
calls and local procedure calls. If component’s packaging fails to match the packaging needed in
use, mechanical adaptation may be possible. Our current implementation makes initial steps toward
supporting adaptation in the face of mismatch.

2.4. Accommodating Analysis Tools

Architectural descriptions should be “open” with respect to analysis tools. We must accommodate
techniques that are applied at the systems level of design. These analysis tools will often be devel-
oped independent of the model. They may address such properties as functional correctness, per-
formance, and timing (e.g., allowable order of operations, real-time guarantees). The architectural
description language should be able to interact with any analysis technique that works with infor-
mation in the architectural specifications. It should be able to record the system-level specifications
required by external tools as uninterpreted expressions, deliver information to the tools, receive re-
sults from the tools, and incorporate those results in the architectural description.

Perhaps the most natural kind of system-level analysis is that of functional specification, which might
use pre- and post-conditions to check procedure calls, for example. Perry suggested this as part of
his software interconnection model [Perry 87]. Rather than building a theorem prover into the
system, the system could collect the assertions from a procedure’s definer and a potential caller and
invoke an external theorem prover to decide whether to allow the call. This will provide a much
stronger check than either name matching or signature comparison.

A second example is rigorous analysis of the real-time properties of a system. For certain classes of
systems, correctness depends on the time at which computations are completed, not just on whether
the computations themselves are correct. The designer of a system must account for the computation
times of individual modules as well as the complex interactions within the composition of modules.
As described in Section 3.5, our implementation now supports rate monotonic analysis (RMA), which
is a body of techniques for analyzing the schedulability of preemptive, fixed-priority systems. The
Software Engineering Institute at Carnegie Mellon has developed a handbook for this family of
analysis techniques [Klein et al 93].

3 . UniCon: Language for Universal Connector Support

In order to gain experience with the practical details of an architectural description language, we have
implemented a simplified initial system. The system, called UniCon, emphasizes the structural aspects
of software architecture. It is higher-level and more general than existing mechanisms for system
composition, but it is low-level compared to the model of Section 2. Specifically, the objectives of
this implementation were the following:

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 12

• Address real problems of system description and composition; provide a prototype of a
practical tool.

• Provide uniform access to a wide range of connection mechanisms. Select connectors that
are available in the local computing environment so we can concentrate on providing them,
not inventing them; however, select with diversity in mind.

• Help software designers to discriminate among different types of components and different
types of connectors and to check the legitimacy of proposed configurations.

• Support both graphical and textual notations with interchange between the representations.

• Support analysis tools and specification notations developed by others. Preserve com-
patibility with programming tools in common use.

• Accept existing components. Use components written in ordinary programming languages,
including those not written for use with this tool.

• Keep added run-time costs to a minimum. Ideally all UniCon-specific elements disappear by
the time the executing system is initialized.

To speed the process of gaining experience, some simplifications were made to the model when
implementing UniCon, namely:

• UniCon supports composite components but not composite connectors.

• Abstractions for components and connectors are built in, but new ones cannot yet be
defined. These built-in elements sample a diverse space, but the set is in no sense complete
and a unifying taxonomy is not yet provided.

• The only primitive components at present are compilation units. Although the implementa-
tion is largely language-indifferent, C is the language supported at present.

• The syntax has not been refined for conciseness yet. It can be a bit wordy, especially when
making intermodule connections of procedures and data with no change of name.

This section begins by presenting the semantics of UniCon (Section 3.1). As an aid to intuition, this
section anticipates the syntax discussion by providing a sample of the textual form of the KWIC
example from Figure 1. The following two sections describe graphical syntax (Section 3.2) and
textual syntax (Section 3.3); these are equivalent. We then describe the way existing code is
incorporated as primitive components (Section 3.4) and the technique for using external analysis
tools (Section 3.5).

3.1. Semantics

Following the model presented in Section 2, UniCon is based on two complementary kinds of
constructs: the component and the connector. Their structures are symmetric, except that composite
connectors are not yet supported. Each has:

• a Name

• a specification (called an Interface for a component, a Protocol for a connector)

• a component or connector Type

• a set of global assertions in the form of a Property List

• a collection of association units: Players for components, Roles for connectors. Specific
details about these are specified in Property Lists.

• an Implementation

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 13

Each of these definitions can be understood solely in terms of its specification, and the properties of a
system should be derivable from the specification of its components and connectors. This is closely
related to Lam and Shankar’s properties separability and composability [Lam & Shankar 94]. Each
provides a template that is instantiated when it is used. Information about distinctions among
components, connectors, players, and roles is used for an analog of type checking. The definition of
language semantics is organized around this structure. Section 3.1.1 describes components, Section
3.1.2 describes connectors, and Section 3.1.3 describes type checking.

3 . 1 . 1 . Components

Components define computational capabilities. A component consists of an interface that specifies
the capabilities the component exports and an implementation, which may be primitive or composite.
The interface of a component must be consistent with its implementation. In the case of a primitive
implementation, such as a source file or executable, this is the responsibility of the programmer. In
the case of a composite implementation, the interface must be consistent with the interfaces of its
member components and the protocols of its connectors; its semantics should be derivable from the
interfaces of its constituents.

The interface defines the computational commitments the component can make and constraints on
the way the component is to be used. The interface provides the guarantees that will hold of the
behavior and performance of the component. It should be possible to use the component by refer-
ence to the interface alone. The interface must include

• the component type

• assertions and constraints that apply to the entire component

• the players defined by the component, which each consist of a name and type and optional
attributes like signature, functional specifications, constraints on use, or information required
specifically by a component type (e.g., port bindings of Unix file descriptors).

A component type expresses the designer's intention about the general class of functionality to be
provided by the component; it restricts the numbers, types, and specifications of the Players defined
by the component. The players, which form the bulk of the interface, are the visible semantic units
through which the component can interact, request and provide services, or be influenced by external
state or events. The interactions are mediated by the roles of connectors. The detailed specifications
of the players appear in the form of property lists, which are lists of attributes and their associated
values. Program 1 shows an example of the textual description of both a primitive and a composite
component, which will be referenced throughout this section. Component types and their associated
players are discussed below in Section 3.1.1.1.

To provide some specific intuition for the semantics, we will use the pipeline implementation of
KWIC presented in Figure 1. This example’s pipeline involves four filters, one file, four pipes, and
the two streams that are Players in the composed system. Three of the filters in this example have the
canonical interface for a simple filter, specifying stdin, stdout, and stderr; merge, of course, has two
inputs. For these filters the specification further indicates that the data on the stream is line-oriented.
Program 1 shows the textual notation for two components from the KWIC example, which will be
referenced throughout this section.

Component KWIC from Program 1 is an example of a system. A system is a component, usually a
composite component, that is capable of independent operation in the context of a computer and its
operating and runtime systems. The external specification of the system is the interface of the com-

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 14

ponent. The system remains eligible for use as a component; indeed, the essence of systems inte-
gration is finding ways to treat as subsystems today those things that were systems last week. A system
may interact with users and other systems. A system is closed in the sense that all the players of its
interface are bound to its execution environment; it implements a function that is discrete and
complete in the mind of its designer. This is the result of an architectural definition.

COMPONENT sort
INTERFACE IS

TYPE Filter
PLAYER input IS StreamIn

SIGNATURE ("line")
PORTBINDING (stdin)
END input

PLAYER output IS StreamOut
SIGNATURE ("line")
PORTBINDING (stdout)
END output

PLAYER error IS StreamOut
SIGNATURE ("line")
PORTBINDING (stderr)
END error

END INTERFACE

COMPONENT KWIC
INTERFACE IS

TYPE Filter
PLAYER input IS StreamIn

SIGNATURE ("line")
PORTBINDING (stdin)
END input

PLAYER output IS StreamOut
SIGNATURE ("line")
PORTBINDING (stdout)
END output

PLAYER error IS StreamOut
SIGNATURE ("line")
PORTBINDING (stderr)
END error

END INTERFACE

IMPLEMENTATION IS
VARIANT sort IN "sort"

IMPLTYPE (Executable)
INITACTUALS ("-f")

END sort
END IMPLEMENTATION

END sort

IMPLEMENTATION IS
/* First instantiate the parts to use */

USES caps INTERFACE upcase
USES shifter INTERFACE cshift
USES req-data INTERFACE const-data
USES merge INTERFACE converge
USES sorter INTERFACE sort

USES P PROTOCOL Unix-pipe
USES Q PROTOCOL Unix-pipe
USES R PROTOCOL Unix-pipe

/* Associate players of some parts to players
of interface. By default, all stderrs are
bound to the external stderr */

BIND input TO caps.input
BIND output TO sorter.output

/* Describe the way KWIC is built from parts
by directly associating players with
roles */

CONNECT caps.output TO P.source

CONNECT shifter.input TO P.sink
CONNECT shifter.output TO Q.source

CONNECT req-data.read TO R.source

CONNECT merge.in1 TO R.sink
CONNECT merge.in2 TO Q.sink

/* Syntactic sugar for full connections */
ESTABLISH Unix-pipe WITH

merge.output AS source
sorter.input AS sink
END Unix-pipe

END IMPLEMENTATION
END KWIC

Program 1. A primitive and a composite component.

A component’s implementation may be either primitive or composite. Primitive implementations
provide one or more ways to locate a definition in some programming language and are discussed

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 15

below in Section 3.1.1.2. Composite implementations instantiate a set of components and configure
them with connectors and are discussed in Section 3.1.1.3.

ComponentType Player Types supported

Module RoutineDef, RoutineCall, GlobalDataDef, GlobalDataUse, PLBundle, ReadFile,
WriteFile

Computation RoutineDef, RoutineCall, GlobalDataUse, PLBundle

SharedData GlobalDataDef, GlobalDataUse, PLBundle

SeqFile ReadNext, WriteNext

Filter StreamIn, StreamOut

Process RPCDef, RPCCall

SchedProcess RPCDef, RPCCall, RTLoad

General All (that is, any player type is allowed)

Table 1. Built-in component types and their players.

3.1.1.1. Built-in Component Types

Component types and player types are currently defined by enumeration, but extensions may be
supported some day. Table 1 lists the component types currently supported and the players allowed
for each. This set of component types was selected opportunistically: we wanted to reflect
components and connectors used in practice and to cover as wide a variety as possible. Each of these
is described in detail below.

• Component type Module corresponds to a compilation unit in a typical programming
language. The RoutineDef players correspond to exported procedures and functions. The
RoutineCall players correspond to imported procedures and functions. Similarly,
GlobalDataDef and GlobalDataUse players correspond to import and export of named
data. The ReadFile and WriteFile players provide an input/output capability.3 These
players correspond directly to language constructs or system calls. However, modules
frequently define one or more coherent collections of players; when designers think about
the architecture of the system, they think about the use of a collection of players rather than
about all the individuals. UniCon captures this with an abstract player, PLBundle, that
corresponds to a set of individual players related to procedure calls or data use. Modules are
intended to provide definitions that will be linked in a single name space.

• Component type Computation is a specialization of Module whose interface is restricted to
defining procedures, functions, and bundles thereof and using procedures, functions, and
data defined elsewhere. It is intended to capture purely computational units that are
collections of procedure definitions and calls. Similarly, component type SharedData is a
specialization of Module whose interface is restricted to defining and referencing data.

• Component type SeqFile corresponds to sequential files in which lines, characters, or records
(as specified by the RecordFormat attribute) are read sequentially from the front (ReadNext)
and written sequentially at the end (WriteNext).

3This currently makes no provision for interactive input and output. This will be addressed soon
by adding a connector for typescripts, later by adding a connector that provides protocol for
interaction with a user-defined graphical interface.

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 16

• Component type Filter corresponds to Unix filters in which input arrives in streams and
output is produced in streams (StreamIn and StreamOut). The syntax of the stream (the
structure imposed on elements in the stream) may be specified by the Signature attribute.

• Component type Process corresponds to an independently scheduled process at the operat-
ing system level. It differs from Filter in that it interacts via remote procedure calls (RPCDef
and RPCCall) rather than data flow.4 SchedProcess is a special type of Process that admits
of real-time analysis and scheduling; (see Section 3.5). A SchedProcess provides an abstract
player RTLoad that provides the information required for real-time scheduling using
attributes SegmentSet, Trigger, SegmentDef, and TriggerDef.

• A General component type allows any player types, thus allowing the definition of arbitrary
components; it does not support analysis or checking. Using general components when it is
possible to use more specific types defeats the purpose of component typing.

4Interprocess data sharing will be added in the future.

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 17

Attribute Req/Opt Merge
Rule

Applies to
Components

Value / Default / Syntax

InstFormals optional merge all Formal parameter list for instantiation of component. Default
is no instantiation parameters. Syntax depends on rules of
implementation language.

Variant optional replace all Used during instantiation of the component to select among
variant implementations. Default is the first implementation
provided. Syntax is name of a variant.

RecordFormat optional replace SeqFile Format of records in the file. Default is lines separated by
<CR>. Syntax depends on rules of implementation language.

Library optional replace Computation,
Module,
SeqFile,
SharedData

Changes default value of MinAssocs to 0 (i.e., allows unused
players). Also provides hint to builder to generate library
archive rather than simple executable form.

EntryPoint optional replace Module,
Computation,
Process,
SchedProc

Point at which to start execution. Default is main program of
module. Syntax is procedure name.

Priority optional replace SchedProc Priority at which real-time operating system should run the
process. Default is highest. Syntax is integer.

Processor optional replace All Processor on which the component will be executable. Default
is local processor. Syntax is processor name.

SegmentDef required replace SchedProc Definition of a segment of code in the implementation of a
real-time component. Syntax is name followed by ‘;’ followed
by execution time in seconds. No default

TriggerDef optional replace SchedProc Definition of external stimulus that activates a segment.
Syntax is name followed by ‘;’ followed by period of stimulus
in seconds. No default.

RPCTypesIn optional merge Process,
SchedProc

Auxiliary information required to derive language-independent
type information for RPC generator.

RPCTypedef optional replace Process,
SchedProc

Auxiliary information required to derive language-independent
type information for RPC generator.

Table 2. Attributes that apply to components.

Attributes in property lists provide further specification of a component. Each attribute is relevant to
one or more component types and may be required or optional; it must specify what to do if multiple
values are specified for the attribute, for example, in different property lists. The possibilities are
currently to use the most recent (replace), to construct a list of all values (merge), and to refuse
multiple definitions (error). Certain attributes pertain to a component as a whole. For example, in
cases where it is possible to provide instantiation parameters to an entire component, those are
provided with the property list for the component itself. Table 2 lists component attributes, and Table
3 gives the attributes defined for Players. They are largely specific to the type of the Player.

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 18

Attribute Req/Opt Merge
Rule

Applies to
Players

Value / Default / Syntax

MaxAssocs optional replace all Maximum number of associations the player can be involved
in. Default is unlimited. Syntax is integer.

MinAssocs optional replace all Minimum number of associations the player can be involved
in. Default is 1. Syntax is integer.

Signature required error RoutineDef,
RoutineCall,
GlobalDataDef,
GlobalDataUse,
StreamIn,
StreamOut,

ReadFile,
WriteFile,
RPCDef,
RPCCall

Formal parameter list or type definition, possibly with default
values for the parameters. No default value; this is such an
essential part of the definition of these players that even an
empty parameter list should be explicitly indicated. Syntax is
dependent on type of player and implementation language.

Portbinding required replace StreamIn,
StreamOut

Binding of port for pipe. Defaults are stdin for StreamIn and
stdout for StreamOut. Syntax is integer or port id such as
stdin, stdout, stderr.

Member required replace PLBundle Defines a player to be a member of an abstract collection of
players that correspond to programming language constructs
procedure and data. Syntax is name, player type, and property
list, separated by ‘;’. No default

SegmentSet required replace RTLoad Specifies the set of segments that make up a RTLoad. Syntax
is a set of SegmentDefs. No default.

Trigger optional replace RTLoad Specifies a trigger to be used in a RTLoad. Syntax is
TriggerDef. no default.

Table 3. Attributes that apply to Players.

3.1.1.2. Implementation of Primitive Components

Primitive components are implemented directly in the code of some programming language or data
stored in files. They are made available to UniCon by providing an appropriate specification as a
wrapper. Code may be represented as source, object, or executable; other representations will be
added as required.

Since multiple representations for a component may be available (for example, both source and
object code), UniCon allows multiple representations, called variants, to be specified. When a
primitive component is instantiated, the Variant attribute can be used to select the preferred variant.
This capability can be exploited, for example, to provide variants with different performance prop-
erties or variants with special support for debugging or monitoring. Table 4 shows the attributes
defined for primitive implementations of components.

The KWIC indexer example is constructed from primitive filter components, like the Sort component
shown in Program 1. The interfaces of the component filters are very similar to the interface for the
whole system. The implementations are primitive, and since they correspond directly to executable
Unix filters, they have only one variant.

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 19

Attribute Req/Opt Merge
Rule

Applies to
Components

Value / Default / Syntax

ImplType optional error all Representation: source, object, executable, data, or whatever.
Default is to refer to file extension. Syntax is literal from
enumeration of known kinds

InitActuals optional error all Actual parameters for initialization

BuildOption optional merge all Options passed to the system builder. Syntax is option syntax
for system builder. No default.

Table 4. Attributes defined for primitive components.

3.1.1.3. Implementation of Composite Components

Composite components provide the capability of building up progressively larger subsystems from
components of (potentially different) types. A composite implementation must provide three kinds
of information:

• The parts: Instantiations of the components and connectors from which the composite
component is constructed.

• The configuration: Specification of how the instantiations of connectors link the
instantiations of components, i.e. the associations5 between players and roles.

• The abstraction: Specification of how the players of the interface will be associated with
players of the implementation.

Since more than one instance of an element (component or connector) definition may be used in a
single implementation, these definitions are templates to be instantiated for each use. Each instan-
tiation may provide a property list that further constrains the attributes of the element. The merge
rule of the attribute determines the interpretation when multiple values are provided for an attribute.

The configuration of the composite implementation is defined by explicitly connecting players and
roles. Each match is checked by comparing the type of the player against the Accepts attribute of the
component, ensuring that maximum and minimum connection counts are satisfied.

The interface of the component being defined specifies the players that the component must provide;
these are the ExternalPlayers. In the implementation, players are provided when components are
instantiated; these are the InternalPlayers. The abstraction step defines ExternalPlayers in terms of
InternalPlayers. Two cases arise:

• In the simple case, one of the constituent components defines an InternalPlayer of the same
type and specification as the ExternalPlayer. In this case, simple name binding suffices to
export the player through the interface.

• The more complex case arises when an ExternalPlayer is of a type not directly supported by
the programming language. In this case the ExternalPlayer must be implemented by more
concrete InternalPlayers of the implementation. This is the case, for example, when a
StreamIn is implemented with calls on library routines that read standard input. It will be-
come increasingly common as we add more abstract players that are realized as calls on sev-
eral specific procedures according to set protocols. The definition of such an abstract

5An association is either a bind (to an external player of a component) or a connect (to a role of a
connector).

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 20

connector must specify the functionality that the implementation must provide. In this case,
the binding must indicate the name of the ExternalPlayer in the interface and show how
InternalPlayers satisfy the required functionality. The special attribute MapsTo identifies the
InternalPlayer(s).

Warnings about ExternalPlayers and roles that are not associated with InternalPlayers are given as
appropriate. Setting the MinAssocs attribute of a Player to 0 indicates that it is normal for the Player
to be unassociated. A Library attribute will soon be provided to indicate that many players will
normally remain unassociated.

In the implementation of KWIC in Program 1, four filters and a file are used to build a system that is
itself a filter. The definition of pipe used here corresponds to unix: as indicated in Table 5, it
supports the players of sequential files as well as filters. The implementation is composite and has
three parts. First, it instantiates the parts to be used. Next, it binds the StreamIn of the first filter
(caps) to the StreamIn of the interface and the StreamOut of the last filter (sorter) to the StreamOut of
the interface. (This is an example of the simple case where ExternalPlayers are bound to
InternalPlayers of the same type.) Finally, it configures the system by indicating which inputs and
outputs are connected by which pipes. The example shows two ways to do this: by individually
associating players to roles of explicitly instantiated pipe connectors and by a single statement that
implicitly instantiates the pipe and makes all connections at once. The former allows the connections
to be grouped by the designer’s choice; the latter assures the reader that no other roles of the
connector are connected elsewhere. The mechanical character of the example provides ample
motivation for using the graphical interface described in Section 3.2.

3 . 1 . 2 . Connectors

Connectors mediate interactions among components. A connector consists of a protocol that spec-
ifies the class of interactions the connector provides and an implementation. Connectors define the
protocols and mechanics of interaction together with any additional mechanisms required to carry
out the interaction: auxiliary data structures, initialization routines, and so on. The connector def-
inition is also the location for specifications of required behavior such as interchange representations
and the internal manifestation (e.g. sequence of procedure calls) of the connector in the code of a
component. At present, all connectors are primitive and their implementations are therefore
individually crafted within the UniCon implementation.

The protocol defines the allowable interactions among a collection of components and provides
guarantees about those interactions. To do this it defines roles, or the responsibilities of various par-
ties that set requirements for the players of components whose interactions are to be governed by the
connector. The author of the component is responsible for ensuring that these responsibilities are
satisfied by the implementation. The protocol must include:

• the connector type

• assertions that constrain the entire connector (for example, rules about timing or ordering);
these are the commitments about the interaction that the protocol supports

• the roles that participate in the protocol; each consists of a name and type and optional
attributes like signature, functional specifications, or constraints on their use.

A connector type expresses the designer's intention about the general class of connection to be
provided by the connector; it restricts the numbers, types, and specifications of the Roles provided by
the connector. In particular, some roles may require players, some may be optional but constrained

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 21

if present, and some may be restricted to match certain player types. A good example from a
programming language would be the generator as defined in Alphard [Shaw 81].

The roles are the visible semantic units through which the connector mediates the interactions among
components. Their types are primitive typing units. They are used to identify the players that must
cooperate in a successful interaction. Roles identify the kinds of interactions a connector can
establish—the kinds of components it can work with and the player types it can handle. When a role
appears in a protocol, it must specify a name and role type and may optionally specify other at-
tributes; some of these attributes may be required in particular instances. The detailed specifications
of the roles appear in the form of property lists, or lists of attributes and their associated values. Roles
form the bulk of the protocol.

CONNECTOR Unix-pipe
PROTOCOL IS

TYPE Pipe
ROLE source IS source

MAXCONNS (1)
END source

ROLE sink IS sink
MAXCONNS (1)
END sink

END PROTOCOL

IMPLEMENTATION IS
BUILTIN

END IMPLEMENTATION
END Unix-pipe

Program 2. A primitive connector.

At present, only primitive implementations of connectors are supported. Program 2 gives the textual
definition of the pipe connector for the KWIC example. These connectors only have primitive
bodies, so there is no issue of matching. The bodies are at present defined in an ad hoc manner.
Primitive connectors are not further interpreted at the architecture level except through their proto-
cols. This might be as simple as a rule that procedure calls must match procedures in the fashion
allowed by the programming language or as complex as a network protocol supported by several
independent communication servers.

3.1.2.1. Built-in Connector Types

Connector types and role types are now defined by enumeration, but extensions may someday be
supported. Table 5 lists the connector types currently supported, the roles allowed for each, and the
players that the roles can support. As for component types, we chose them opportunistically. For
connectors, especially, we wanted to deal with the practical details of actual implementations.

Some of these are more closely related than others (the same is true for components). FileIO and
Pipe are abstractions over the same Unix mechanisms. The language would benefit from type tax-
onomies that show these relations. In this case, for example, it would not be necessary to identify all
three component types for which GlobalDataUse may be a player. Moreover, General could be
treated as the root of a taxonomy rather than as a special case.

Connector type Pipe provides the Unix abstraction of pipe. Depending on whether it establishes an
interaction between pipes or files, it chooses the correct implementation mechanism. When a system is
constructed of many pipes, filters, and files, UniCon creates an initialization routine that starts up the
filters with all the proper port bindings; it handles arbitrary topologies correctly. The KWIC example

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 22

of Figure 1 is based on pipes. Specifically, it uses Unix-pipes, which are of type Pipe. These
particular pipes are restricted to a single association, so an attribute is provided to override the default.
The protocol specifies two roles, corresponding to the two ends of the pipe.

ConnectorType Role Types and the Players they support

Pipe Source (accepts StreamOut of Filter, ReadNext of SeqFile)
Sink (accepts StreamIn of Filter, WriteNext of SeqFile)

FileIO Reader (accepts ReadFile of Module)
Readee (accepts ReadNext of SeqFile)
Writer (accepts WriteFile of Module)
Writee (accepts WriteNext of SeqFile)

ProcedureCall Definer (accepts RoutineDef of Computation or Module)
Caller (accepts RoutineCall of Computation or Module)

DataAccess Definer (accepts GlobalDataDef of SharedData or Module)
User (accepts GlobalDataUse of SharedData, Computation, or Module)

PLBundler Participant (accepts PLBundle, RoutineDef, RoutineCall, GlobalDataUse, GlobalDataDef
of Computation, Module or SharedData)

RemoteProcCall Definer (accepts RPCDef of Process or SchedProcess)
Caller (accepts RPCCall of Process or SchedProcess)

RTScheduler Load (accepts RTLoad of SchedProcess)

Table 5. Built-in connector types and their roles.

Connector type FileIO sets up sequential file reading and writing.

Connector types ProcedureCall and DataAccess provide the architectural abstractions that correspond
the usual inter-module connections supported by programming languages. In addition to making
these connectors visible at the architecture level, they do type checking of the defines/uses relation on
the basis of signatures rather than the spelling of identifier names.

Connector type PLBundler supports the abstraction for connecting a collection of procedure or data
definitions with their calls or uses. It abstracts from ProcedureCall and DataAccess in the same way
that PLBundle abstracts from the corresponding player definitions.

Connector type RemoteProcCall corresponds to the RPC facility supplied by the operating system. It
relieves the user of the need to work explicitly with complex libraries and generator processes.

Connector type RTScheduler mediates competition for processor resources among a set of real-time
processes. It requires an operating system with appropriate real-time capabilities. When rate-
monotonic scheduling is selected, UniCon invokes a schedulability analysis to check the real-time
correctness of the set of processes to be scheduled. This facility is described in Section 3.5

Further specification of each connector is achieved by providing values for certain attributes. These
attribute-value associations are made by property lists. Each attribute is relevant to one or more
connector types. It may be required or optional. It must specify what to do if multiple values are
specified for the attribute, for example in different property lists. The possibilities are currently to
use the most recent (replace), to construct a list of all values (merge), and to refuse definitions after
the first (error).

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 23

Certain attributes pertain to the connector as a whole. For example, a design decision such as which
type of Unix pipe or which real-time scheduling algorithm to use applies to the entire connector.
Table 6 shows the attributes of entire connectors. Table 7 lists the attributes defined for Roles. The
attributes are largely specific to the type of the Role.

Attribute Req/Opt Merge
Rule

Applies to
Connectors

Value / Syntax / Default

InstFormals optional merge all Formal parameter list for instantiation of component. Default
is no instantiation parameters. Syntax depends on rules of
implementation language.

PipeType optional replace Pipe Selects which kind of Unix pipe to use. Default is named.
Syntax is select from Named, Unnamed.

Match optional merge PLBundler Identifies connections to be made between members of bundles.
Syntax is set of <player, player> pairs. Default is name
matching among the participating PLBundles

Algorithm required replace RTScheduler Names real-time scheduling algorithm to use from enumeration.
Default is RateMonotonic.

Processor optional replace RTScheduler Names processor to run the set of processes on; processor must
be running a RT operating system. Default is local.

Trace required
if sched
is RMA

error RTScheduler Defines a trace of paths through the real-time code. Syntax is
RTLoad.Trigger, RTLoad.Segment, RTLoad.Segment, ..

Table 6. Attributes for connectors.

Attribute Req/Opt Merge
Rule

Applies to
Roles

Value / Syntax / Default

Accept optional merge all Identifies types of players that can serve in this role. Default is
enumerated in table above. Syntax is
(ComponentType.Player type ,) +

MaxConns optional replace all Maximum number of players the role can be bound to. Default
is unlimited. Syntax is integer.

MinConns optional replace all Minimum number of players the role must be bound to.
Default is 1. Syntax is integer.

Table 7. Attributes for roles.

3.1.2.2. Implementation of Primitive Connectors

The implementation details about these connectors are provided in Section 4. Unlike components,
the connectors do not correspond to discrete items to be linked in or referenced. In the current
system, ProcedureCall and DataAccess connectors use the mechanisms (e.g., the linker) of the un-
derlying language and leave no residue at execution time; if renaming is done by a composition, it is
handled with compile-time macros.

Pipe and FileIO connectors use Unix ports, pipes, and files; an initialization procedure sets up the
appropriate topology and starts the processes.

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 24

For the RemoteProcCall connector, UniCon automatically generates, compiles, and links the “glue
code” for the processes doing the RPCs. This glue code collects the arguments of the remote pro-
cedures and converts them to messages that are passed between processes.

For the RTScheduler connector, UniCon collects the Trigger and Segment specifications from the
RTLoad players and passes them to the Rate Monotonic analysis tool for analysis of the trace in-
formation. To establish the connection, UniCon adds Real-Time Mach scheduling information to the
processes to make them schedulable in the operating system and makes them available on the target
machine for initialization.

For all processes running under Mach or Real-Time Mach, UniCon turns the code specified in the
implementations of the Process or SchedProcess component into heavyweight processes. This is not
required for Unix processes since they are already heavyweight processes.

3.2. Graphical Notation

In practice, designers rely heavily on diagrams for describing system architectures. Therefore a
graphical form of the notation is essential. The graphical notation for UniCon and its user interface
allow specifications to be built incrementally. Figures 1, 2, and 3 were produced with the graphical
interface, except that the annotations were added manually.

Our emphasis is on defining composite components. Each component corresponds to a window in
which the parts, configuration, and abstraction of a composite component are laid out. The frame of
a component’s definition window is shaded to suggest the type of the component that is being
implemented. The designer instantiates components and connectors from a menu of defined types
and positions them. Smaller icons on the edges of the components and ends of the connectors rep-
resent players. More identifying information is supplied dynamically as the designer’s focus moves
from one element to another. Each element has an associated detailed definition that can be opened
and manipulated during design.

As far as is possible, different types of components, players, and connectors are distinguished
iconically. The graphical editor invokes the checking facilities of the language processor to check as
much as possible while the diagram is being developed, so errors are largely prevented rather than
corrected after the fact. Figure 2-b contains two features of particular note: The clouds on the edges
of the rev component indicate that an abstraction binding is being used, and the chain links on the
connectors between rev and the two supporting components show use of definition bundles rather
than explicit connections of individual procedures.

The tool does take an initial step toward resolving type mismatches as discussed in Section 2.3. When
a connection of RoutineCall and RoutineDef with mismatched signatures is proposed, the editor
selects a connector of type TranslatingProcedureCall. Though not yet fully implemented, this
mechanism will allow the connection and provide the designer with a code template that translates the
calling signature to the declared signature. The designer must fill in the code to correctly perform
the translation. When the graphical composition is complete, the tool generates a correct and
complete textual representation.

3.3. Textual Notation

UniCon also supports a conventional textual form. Since the language is still fluid, we have chosen a
very simple syntax that relies on property lists to provide information. More elaborate concrete

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 25

syntax will be selected when we relax some of the restrictions noted at the beginning of Section 3 and
move on to a successor language. The collected syntax appears in Appendix A.

The textual notation is interconvertible with the graphical notation. On an initial conversion from
text to graphics the screen position attributes will be missing, so manual positioning will be required.
Any conversion from graphics to text will yield property lists that include screen position attributes;
these are parsed but ignored by the tool.

The syntax is illustrated with the textual UniCon definition of the system sketched in Figure 2. At the
top level, this system is a pipe-and-filter system. The example shows how one of the filters is
implemented in terms of simple procedures and data. We also use the KWIC indexer of Figure 1 as
an example. It has five primitive components and one composite component. It uses two types of
connectors, for pipes and procedure/data bundles. The stack component and the PLBundler
connector are shown in Program 3.

3 . 3 . 1 . Major Constructs

Section 3.1 presented an overview of the language. It introduced the two fundamental complemen-
tary constructs, the component and the connector, and it established the need for separate specifi-
cation parts and implementations. In the suggestive syntax given here,

• CAPITAL_LETTERS are used for the built-in words of the language;

• BoldItalicLetters are used for nonterminal definitions;

• ItalicLetters are used for fixed enumerations; and

• CapitalsWithLowerCase are used for identifiers supplied by the programmer (often
constrained to be of a specific kind).

To avoid tedious syntax with extraneous nonterminals, the expression (Foo ;)* denotes a
parenthesized list of zero or more Foos separated by semicolons; a + instead of * denotes a list of at
least one; a # instead of * denotes zero or one (optional feature). As a special case, { Foo } *
denotes a sequence of Foos with no punctuation. The syntax for components and connectors is

Component ::= COMPONENT CompTemplateName
INTERFACE IS

TYPE ComponentType
{ PropertyList } #
{ PlayerList } #

END INTERFACE
IMPLEMENTATION IS

{ PropertyList } #
PrimComponent | CompComponent

END IMPLEMENTATION
END CompTemplateName

PlayerList ::= { PLAYER PlayerName IS PlayerType
{ PropertyList

END PlayerName } # } +

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 26

Connector ::= CONNECTOR ConnTemplateName
PROTOCOL IS

TYPE ConnectorType
{ PropertyList } #
RoleL i s t

END PROTOCOL
IMPLEMENTATION IS

PrimConnector
END IMPLEMENTATION
END ConnTemplateName

RoleL i s t ::= { ROLE RoleName IS RoleType
{ PropertyList

END RoleName } # } +

3 . 3 . 2 . Primitive Components

Primitive components are introduced by creating interfaces as “wrappers” for code written in a
conventional programming language. The implementation part serves to identify the code and pro-
vide startup parameters. The actual parameters may refer to the formal parameters of the interface.
The system supports multiple versions of implementations. The primary current use is for providing
source, object, and executable representations. It will also support different implementation variants
for debugging, performance monitoring, different libraries, and different performance characteristics.
When a component is instantiated, it may supply an attribute to select a variant.

PrimComponent ::= { Implementation } +

Implementation ::= VARIANT ImplName IN FileSpec
{ PropertyList

END ImplName } # } +

COMPONENT stack
INTERFACE IS

TYPE Computation
PLAYER stackness IS PLBundle

MEMBER (init_stack; RoutineDef;
SIGNATURE (; "void"))

MEMBER (stack_is_empty; RoutineDef;
SIGNATURE (; "int"))

MEMBER (push; RoutineDef;
SIGNATURE ("char *"; "void"))

MEMBER (pop; RoutineDef;
SIGNATURE ("char * *"; "void"))

END stackness
END INTERFACE

CONNECTOR C-PLBundler
PROTOCOL IS

TYPE PLBundler
ROLE participant IS participant

END PROTOCOL

IMPLEMENTATION IS
BUILTIN

END IMPLEMENTATION
END C-PLBundler

IMPLEMENTATION IS
VARIANT stack IN "stack.c"

IMPLTYPE (Source)
END stack

END IMPLEMENTATION
END stack

IMPLEMENTATION IS
BUILTIN

END IMPLEMENTATION
END C-proc-call

Program 3. Stack component and procedure call connector.

A typical primitive implementation is the stack component of Program 3. Note that the full set of
operations is exported as a single player; this abstraction supports the intuition that the operations
form a coherent collection and will usually be used as a whole. Only one implementation is provided,
the source code. Contrast this with the definition of sort in Program 1, which provides an executable
representation and the switches to provide when the process is started.

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 27

3 . 3 . 3 . Composite Components

Composite components provide the mechanism for building up subsystems from primitive com-
ponents (compilation units) or smaller subsystems. A composition requires

• instantiations of some components, defined in the CompUses.

• instantiations of any required connectors, defined in the ConnUses.

• association of the Players of some of these components with the Players of the component
being defined, established in the Bind

• definition of the interactions among the components, specifically by defining the fashion in
which they are connected and associating the Players of the constituent Interfaces with the
Roles of the Protocols, enumerated in the Connect

The basic syntax addresses these three points. Because establishing connections in some of the
simplest cases can sometimes become tedious, some syntactic sugaring is also provided. The
PropertyList in the USES clause is intended to select properties specific to the instance being created
(for example, initialization parameters).

CompComponent ::= { CompUses | ConnUses | Bind | Connect } +

CompUses ::= USES CompInstance INTERFACE CompTemplateName
{ PropertyList

END CompInstance } #

ConnUses ::= USES ConnInstance PROTOCOL ConnTemplateName
{ PropertyList

END ConnInstance } #

Bind ::= SimpleBind | AbstractBind

SimpleBind ::= BIND ExternalPlayer TO InternalPlayer

AbstractBind ::= BIND ExternalPlayer TO ABSTRACTION
PropertyList
END ExternalPlayer

Connect ::= CONNECT PlayerName TO RoleName |
CONNECT RoleName TO PlayerName

In implementations of components, USES clauses instantiate components or connectors. Properties
may be associated with the entire component or with individual instantiations. Attributes defined for
the individual instantiations provide values that are combined with values of the template definition
according to the merge rule defined for the attribute. The AbstractBind partially supports the
abstraction mapping described in Section 2.2; UniCon supports only the simple form in which a
player of one type is “blessed” as adequately implementing a player of some other type. A
common case is the implementation of StreamOut with printf, as in reverse-filter of Program 4.

The syntax allows the individual connections between players and roles to appear in any order.
Often, however, it is helpful to group all the CONNECT statements for one PROTOCOL. In this case
the connector instance name is purely local to that group. Syntactic sugar is provided for this case.
It allows implicit creation of the connector instance and assurance that all of the associations between
ROLES and PLAYERS are established at one time. It is syntactically transformed to the obvious
ConnUses and set of Connects. To allow this, a ConnUses and its complete associated set of Connects
can be replaced by:

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 28

Establish ::= ESTABLISH ConnTemplate WITH
{ PlayerName AS RoleName } +
{ PropertyList } #

END ConnTemplate

In the second example, the reverser is a filter whose implementation is shown in Program 4. The
upper-level system composition, with pipes and filters, is essentially similar to the system in the KWIC
indexer example. The reverser filter is a reverse-filter, whose implementation is given here. The
interface is the standard filter interface, except that since the code never uses stderr attribute
MinAssocs is set to 0 to show that its use is optional. The implementation instantiates three com-
ponents and connects the procedures and data in the PLBundles that the three components define.

Three parts of the definition deserve special note. First, the main program, reverse, uses a stack but
calls the operations by different names from the stack implementation at hand. UniCon’s connection
rules support this renaming easily. Second, the connection is established between players that abstract
stackness from the collection of individual stack operations. Third, the component defines a filter in
terms of procedures. This requires an abstraction step. The components must correctly implement
streams, and the definition must show the correspondence. The rules for implementing streams are
the same in UniCon as in the underlying system; like other aspects of connection definitions, they are
currently built in as special cases. The correspondence is shown in the BIND statements. As de-
scribed in Section 3.1.1.3, the external player type and the internal player type are different. The
appearance of the keyword ABSTRACTION indicates that an abstraction mapping rather than a
simple renaming is taking place.

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 29

COMPONENT reverse-filter
INTERFACE IS

TYPE Filter
PLAYER input IS StreamIn

SIGNATURE ("line")
PORTBINDING (stdin)
END input

PLAYER output IS StreamOut
SIGNATURE ("line")
PORTBINDING (stdout)
END output

PLAYER error IS StreamOut
SIGNATURE ("line")
PORTBINDING (stderr)
MINASSOCS (0)
END error

END INTERFACE

IMPLEMENTATION IS
USES rev INTERFACE reverse
USES stk INTERFACE stack
USES lib INTERFACE libc

BIND input TO ABSTRACTION
MAPSTO (rev.libc.fgets)
END input

BIND output TO ABSTRACTION
MAPSTO (rev.libc.fprintf)
END output

/* Connections related to use of stack.
Note renaming. Checks are based on specs
(here signatures) rather than names */

ESTABLISH C-PLBundler WITH
rev.stackness AS participant
stk.stackness AS participant
MATCH ((rev.stackness.new,

stk.stackness.init_stack),
(rev.stackness.no_more,

stk.stackness.stack_is_empty),
(rev.stackness.stash,

stk.stackness.push),
(rev.stackness.deliver,

stk.stackness.pop))
END C-PLBundler

/* Connections that set up library calls */
ESTABLISH C-PLBundler WITH

rev.libc AS participant
lib.libc AS participant
MATCH ((rev.libc.fgets,

lib.libc.fgets),
(rev.libc.fprintf,

lib.libc.fprintf),
(rev.libc.malloc,

lib.libc.malloc),
(rev.libc.strcpy,

lib.libc.strcpy),
(rev.libc.strlen,

lib.libc.strlen))
END C-PLBundler

END IMPLEMENTATION
END reverse-filter

Program 4. Reverse-filter: a non-primitive component with abstraction.

Additional syntactic sugar is provided for the very common case in which (a) procedure calls and
data access are being connected, (b) the Definers and Callers use the same names, and (c) there are no
duplicate name conflicts. In this case, the connections can be defaulted, thereby avoiding the creation
of very long, error-prone lists of the form

ESTABLISH ProcedureCall WITH
Here.F AS Caller
There.F AS Caller
Everywhere.F AS Caller
Etc.F AS Caller
END ProcedureCall

or, even worse, the fully un-sugared form. Similarly, members of PLBundles will be connected by
default when it is safe and unambiguous to do so.

3 . 3 . 4 . Primitive Connectors

UniCon currently supports only built-in, or primitive connectors. We are extending the list of built-
ins manually. Our emphasis is on incorporating connectors that are already rich, well worked-out,
and supported on the platform of our implementation. Since one of the objectives of this
implementation is to gain experience with a rich variety of connectors, we are not yet in a position to
define composite connectors. The syntax is similar to that for primitive components.

PrimConnector ::= BUILTIN

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 30

3 . 3 . 5 . Property Lists

Property lists appear frequently. Each starts with an attribute name and contains a parenthesized
Property.

PropertyList ::= { AttributeName (Property) } +

A Property is any expression that can be properly delimited by the syntax. This is one of the major
mechanisms in support of an open system; properties can be collected syntactically and without
interpretation, then shipped off to applications capable of analyzing them.

When an attribute is known to UniCon, especially when it is used in UniCon processing, the attribute
is parsed and interpreted. However, when an attribute is provided purely in support of an external
tool, it may be simply passed to the tool as a completely uninterpreted string. This capability is
required to support tools not specifically known to the system.

3.4. Populating the Space of Elements

In order to get meaningful experience with an architecture tool, we must populate its environment
with definitions that do useful things. It is far better to populate this space with real elements than to
build toy examples with code created for the purpose.

We have chosen connectors of practical utility and built them into the system. Our major reason was
to supply a diverse collection of convincing mechanisms. We did that by selecting mechanisms for
which someone else had designed the specification (i.e., protocol) and developed the implementation.
A second reason for this strategy was to gain enough experience to know what the language must
provide to support composite connectors.

Similarly, we chose to accept existing code as primitive components. We do this by creating wrappers
that give the component specification as a UniCon interface and refer to one of the native
representations of the code (source, object, executable, ...) in the primitive implementation.

To simplify the creation of these wrappers, we built a semiautomatic tool that extracts the externally
visible names of a C module and creates a draft UniCon specification. We have not attempted to
perform complete type inference for signatures. Rather, the tool derives a good approximation and
provides unresolved signatures to the human user for resolution. In practice, the tool does most of
the work. Because of the vagaries of C, some names often appear to be externally visible when that
was not the programmers intention, so manual checking is required in any case. Using this tool, we
have created wrappers for the code of the UniCon processor itself, and it has successfully constructed
itself.

3.5. Incorporating Analysis Tools

UniCon can incorporate externally-developed analysis tools. These tools require information in
formats that are not in general known to UniCon. We do this by capturing the tool-specific infor-
mation as (potentially uninterpreted) entries in property lists. UniCon collects the information re-
quired by the tool, forwards it to the tool for analysis, and receives the result for appropriate pro-
cessing (for example, generation of error messages or provision of an attribute value that will affect
system configuration).

We currently support one analysis tool. The RMA tool, described in Section 2.4 determines whether
a set of real-time processes will be schedulable under a rate-monotonic discipline. The operating

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 31

system supported is Real-Time Mach [Kitayama et al 93, Nakajima et al 93].6 We describe both the
UniCon facilities and the connection to the analysis tool here.

Figure 3 shows a real-time client-server example, with two processes contending for processor time.
The real-time characteristics and requirements of this client-server system are recorded as part of the
architectural description, then automatically collected and passed on to a separate analysis tool. This
tool, also developed at Carnegie Mellon, performs real-time schedulability analyses based on tabular
data in the “Implementation Table” format introduced in [Klein et al 93]. These tables describe the
events, actions, and resources of the system. (In this formulation, an event is an abstraction that
consists of a stimulus and a set of responses that follow from it.) Tables 1, 2, and 3 comprise the
Implementation Table for the example of Figure 3. UniCon allows this information to be recorded in
the interfaces of SchedProcess components (see Program 5) and extracts the tables as shown for
transmission to the analysis tool.

The RTM-realtime-sched connector establishes a real-time scheduling relation among a number of
processes. Since an abstract real-time task may require code executing in several processes, so-
phisticated scheduling is required. Program 5 presents the significant parts of the code for the ex-
ample of Figure 3. This includes the component that does the complete system configuration
(Real_Time_System), the specification (only) of one schedulable process (RTClient), and the two
connectors. The component definitions show how property lists are used to specify the information
required by Tables 8, 9, and 10, providing each type of information at the appropriate point in the
design. UniCon extracts the information, creates the tables in the appropriate format, and passes them
to the RMA analysis tool. The information is also used to initialize the schedulable processes on the
correct Real-Time Mach processor under the proper scheduling algorithm.

EVENTS

Event Name Type Mode
Name

Arrival
Pattern

Dead-
line

Responses

client.application1.external_interrupt1 T n/a 1000 1000 client.application1.work_block1,
server.services.work_block1,
client.application1.work_block2,
server.services.work_block2,
client.application1.work_block3

client.application2.external_interrupt2 T n/a 500 500 client.application2.work_block1,
server.services.work_block1,
client.application2.work_block2,
server.services.work_block2,
client.application2.work_block3

Table 8. Event table for Real-time analysis.

6Mach is a microkernel developed at CMU, and a Unix server running on Mach provides a Unix
interface and programming environment. RT Mach, also being developed at CMU, is upward
compatible with Mach but provides extensions including periodic real-time threads, exception
handlers for timing violations, high resolution clocks/timers, real-time synchronization, and real-
time interprocess communication. UniCon supports both Mach and RTMach interprocess
communication (IPC) facilities.

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 32

ACTIONS

Action ID Jitter Resource ID Atomic User ID Time Used Priority

client.application1.work_block1 n/a TESTBED.XX.EDU N client 20 10

server.services.work_block1 n/a TESTBED.XX.EDU N server 40 9

client.application1.work_block2 n/a TESTBED.XX.EDU N client 30 10

server.services.work_block2 n/a TESTBED.XX.EDU N server 30 9

client.application1.work_block3 n/a TESTBED.XX.EDU N client 50 10

client.application2.work_block1 n/a TESTBED.XX.EDU N client 20 10

client.application2.work_block2 n/a TESTBED.XX.EDU N client 30 10

client.application2.work_block3 n/a TESTBED.XX.EDU N client 50 10

Table 9. Action table for Real-time analysis.

RESOURCES

Resource ID Type Scheduling Policy

TESTBED.XX.EDU CPU Fixed Priority

Table 10. Resource table for Real-time analysis.

In this example, the processes also interact via remote procedure calls; these interactions are mediated
by the RTM-remote-proc-call connector. The full text of the example includes one composite
component to define the system, two schedulable process components that convert simple procedures
to processes, two modules that provide the application code of the real-time tasks, two connectors, and
two libraries.

Component type SchedProcess provides an abstraction for processes that must meet real-time
deadlines and that the operating system schedules accordingly. These processes may be periodic or
aperiodic. Real-time applications use SchedProcess components to define computations based on
multiple processes that execute periodically, concurrently, and in competition for the CPU resource.
Interactions among SchedProcess components are mediated by connectors of type RTScheduler.
This connector type recognizes an Algorithm attribute to choose from among six scheduling algo-
rithms. If the algorithm rate_monotonic is selected, UniCon invokes the RMA analysis tool to de-
termine whether all of the schedulable processes will meet their deadlines.

At this level of abstraction, the designer has not indicated how the realtime scheduling connector is to
be implemented. It might be a single scheduling component that registers processes. However, as
described in Section 5.1, the intended implementation involves a combination of lightweight and
heavyweight processes, in some cases with auxiliary hidden processes. The built-in semantics of the
connector component includes the wrappers as well as the initialization code that sets up the operating
system scheduler.

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 33

COMPONENT Real_Time_System
INTERFACE IS

TYPE General
END INTERFACE

IMPLEMENTATION IS
USES client INTERFACE rtclient

PRIORITY (10)
ENTRYPOINT (client)
END client

USES server INTERFACE rtserver
PRIORITY (9)
ENTRYPOINT (server)
RPCTYPEDEF (new_type; struct; 12)
RPCTYPESIN ("unicon.h")
END server

ESTABLISH RTM-realtime-sched WITH
client.application1 AS load
client.application2 AS load
server.services AS load
ALGORITHM (rate_monotonic)
PROCESSOR ("TESTBED.XX.EDU")
TRACE (client.application1.

external_interrupt1;
client.application1.work_block1;
server.services.work_block1;
client.application1.work_block2;
server.services.work_block2;
client.application1.work_block3)

TRACE (client.application2.
external_interrupt2;

client.application2.work_block1;
server.services.work_block1;
client.application2.work_block2;
server.services.work_block2;
client.application2.work_block3)

END RTM-realtime-sched

ESTABLISH RTM-remote-proc-call WITH
client.timeget AS caller
server.timeget AS definer
END RTM-remote-proc-call

ESTABLISH RTM-remote-proc-call WITH
client.timeshow AS caller
server.timeshow AS definer
END RTM-remote-proc-call

END IMPLEMENTATION
END Real_Time_System

COMPONENT RTClient
INTERFACE IS

TYPE SchedProcess
PROCESSOR ("TESTBED.XX.EDU")
TRIGGERDEF (external_interrupt1; 1.0)
TRIGGERDEF (external_interrupt2; 0.5)
SEGMENTDEF (work_block1; 0.02)
SEGMENTDEF (work_block2; 0.03)
SEGMENTDEF (work_block3; 0.05)
PLAYER application1 IS RTLoad

TRIGGER (external_interrupt1)
SEGMENTSET (work_block1,

work_block2, work_block3)
END application1

PLAYER application2 IS RTLoad
TRIGGER (external_interrupt2)
SEGMENTSET (work_block1,

work_block2, work_block3)
END application2

PLAYER timeget IS RPCCall
SIGNATURE ("mach_port_t",

"new_type *"; "kern_return_t")
END timeget

PLAYER timeshow IS RPCCall
SIGNATURE ("mach_port_t";

"kern_return_t")
END timeshow

END INTERFACE

CONNECTOR RTM-realtime-sched
PROTOCOL IS

TYPE RTScheduler
ROLE load IS load
END PROTOCOL

IMPLEMENTATION IS
BUILTIN

END IMPLEMENTATION
END RTM-realtime-sched

CONNECTOR RTM-remote-proc-call
PROTOCOL IS

TYPE RemoteProcCall
ROLE definer IS definer
ROLE caller IS caller

END PROTOCOL

IMPLEMENTATION IS
BUILTIN

END IMPLEMENTATION
END RTM-remote-proc-call

Program 5. System definition for real-time scheduling example:
system definition and connectors

The RMA analysis tool requires information about execution times, periods, relative priorities, and
event traces. A Segment corresponds to a block of code and is defined using the SegmentDef at-
tribute. This attribute defines the Segment’s name and execution time. A Trigger corresponds to the
cause of the event and is either periodic or aperiodic; it is defined using the TriggerDef attribute.
This attribute defines the Trigger’s name and period. An RTLoad player uses the Trigger and
SegmentDef attributes to define the processor load imposed by the SchedProcess in response to a

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 34

single event. The relative priorities are usually determined for each instantiation; they are provided
by attribute Priority, usually when the SchedProcess is instantiated. Event traces describe the se-
quence of computations that will take place as a consequence of an event. A trace may include
segments from many SchedProcesses; it therefore cannot be specified until the processes are asso-
ciated with a RTScheduler connector. Traces are therefore attributes of the connector. Each consists
of a trigger and the segments whose execution follows from that trigger.

4 . Implementation

The UniCon implementation currently supports the language described in Section 3. The imple-
mentation includes tools that process specifications as described in Sections 3.2 to 3.5: a compiler for
the textual form, a graphical interface, a semiautomatic wrapper-generator, and a facility for invoking
the RMA analysis tool.

Much of the underlying technology is standard. The compiler, for example, is in most respects
conventional. Its primary product is Odinfiles7 rather than machine code; these invoke the language
tools that actually construct the systems. It also generates new source code for initialization purposes.
The graphical user interface is built using STk, a Scheme interpreter that bundles Ousterhout’s Tk
toolkit. The wrapper-generator is based on the Gnu C compiler with, of course, much simplified
processing. The interface to the RMA tool is a data format for a spreadsheet.

The novel part of the UniCon implementation is the handling of connectors, in particular high-level
connectors. In UniCon, the implementations of connectors are all built in, the motivation for which
was the need to gain experience with a variety of underlying mechanisms. That experience will put
us in a position to design language-level constructs to allow the addition of user-defined connectors.
We also want to experiment with a wide variety of mechanisms to determine what modifications to the
toolset are required for the addition of new mechanisms. As a reality check, we have chosen
mechanisms that are available and useful in practice. Finally, by using mechanisms that are already
available in our environment, we are confronted with the nitty-gritty details of real implementations.
The current connectors are of four essentially different kinds. These are described in the sections
below.

4.1. Procedure Call and Global Data Access

In order to produce running systems, UniCon must support some of the interaction constructs that are
native to programming languages. In this capacity, UniCon is similar to a module interconnection
language. At present the supported constructs are procedure calls and data naming, but future
versions may add other constructs such as exceptions and language-based synchronization (e.g., Ada
rendezvous). UniCon defines connector types ProcedureCall and DataAccess, and the imple-
mentation supports realizations of these in the C programming language, defined as connectors C-
proc-call and C-shared-data.

7Odinfiles are similar to makefiles, in that they specify system construction steps for producing
program executables. Odinfiles are processed by the odin utility, a make-like utility that computes
complete dependency informatin automatically. Odin’s scripts are shorter and simpler than
make’s. Odin gains efficiency by eliminating most of the filesystem status queries required by
make, by parallel builds on remote machines, and by sharing from a cache of previously computed
derived files. For more informatino on odin, contact Geoff Clemm, geoff@bellcore.com.

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 35

For each player in a procedure call or global data connection, the compiler keeps track of the loca-
tion of the source file or object file that implements the player. When the system has been com-
pletely parsed and all connections have been successfully made, UniCon creates an Odinfile which
compiles all the source files and links all the object files to produce an executable version of the
system. The linker is the tool that actually makes the connections for procedure calls and global data
access.

It is not always convenient, appropriate, or possible to use the same procedure name at call site and
definition site. To overcome this limitation, UniCon allows renaming, as illustrated by stack in the
second example. This is implemented by creating C macros to redefine the differing names to a new,
unique name. This implementation strategy, of course, is possible only with "source" files; object-
level renaming may be added in the future.

In addition to the ESTABLISH abbreviation that allows implicit instantiation of a connector, UniCon
allows procedures and data uses to be connected implicitly by matching names. This provides the
usual capability of a compiler and relieves the system builder from having to enumerate all of the
connections in a complex system. After explicit connections have been performed, any Players with
insufficient associations are checked to see whether they can be connected implicitly. If so, they are
connected and a warning is issued.

The number of individual procedure call connections between two components can be very large. At
the granularity of the system’s architecture, it is not helpful to display them all. Furthermore,
procedures tend to aggregate into collections of procedures related to some aspect of an interface. In
order to support the abstraction of a group of procedure and data connectors, we introduced the
player type PLBundle and the related connector PLBundler. The Participant role of the PLBundler
accepts both bundled and unbundled players. The PLBundler can connect players of any number of
PLBundles; the matching (including renaming) is governed by the Match attribute. In its simplest
form it becomes equivalent to a ProcedureCall or DataAccess connector.

4.2. Unix Pipes and Files

In the Unix environment, the most common connector is the pipe as supported by most shells. The
shell version of pipe, which allows files to be sources and sinks, is an abstraction over the system
mechanisms. At the system level, file operations, named pipes, and unnamed pipes are separate
entities that all happen to be accessed through ports. Like shells, UniCon inspects the components
that a pipe connects and selects the appropriate mechanism to implement the pipe abstraction. Unlike
shells, UniCon provides the same notation for pipe configuration as for others and handles arbitrary
plumbing topologies.

UniCon defines the connector type Pipe. The language supports connection of ports to either files or
to ports of other processes. The tools select the correct implementation from among the low-level
choices provided by unix. This is independent of programming language. The examples in this
paper use a particular form of Pipe connector, the Unix-pipe, whose abstraction is appropriate for this
operating system. UniCon goes one step beyond Unix in providing a signature for each stream to
specify the syntactic structure expected on the stream. UniCon checks these signatures for
consistency.

Most unix users regard connecting a sequence of processes together in a pipeline as a simple task.
Indeed, most of the myriad unix shells provide a simple syntactic mechanism for doing so. This
mechanism allows a one-way data path, with a source, an arbitrary number of intermediate filters, and

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 36

a sink. Thus, when most people think of pipes in the Unix environment, the notion of reading from
“standard input”, writing to “standard output”, and printing errors on “standard error” (so that
they appear on the terminal instead of passing through the pipeline) is the model that comes to
mind—indeed, this has been standard for over 20 years [Ritchie & Thompson 74]. Although this
model has proven useful, many other configurations of communicating processes are possible, such
as the data merging shown in Figure 1, two-way communications, loops, and so forth. So firmly
ingrained is this standard mechanism that most people are unaware that pipes can be used to connect
arbitrary file descriptors from an arbitrary collection of processes together.

UniCon, on the other hand, supports abstractions that encourage the use of general pipeline
topologies. The PortBinding attribute provides for explicit selection of particular ports, and the
freedom from linear text allows the creation of complex topologies.

The low-level details of connecting two processes with a pipe are rather complicated. It requires that
the processes have a common ancestor (i.e., parent process), and that parent establish the pipe
connections before doing the exec on the child processes. UniCon uses this model for connecting
processes with pipes. The implementation is complicated by a number of additional issues:

• UniCon must dynamically assess the interconnection pathway and build the interconnection
code based on an arbitrary linking of processes.

• Because splitting, merging, and data loops are allowed, UniCon must pay careful attention to
parenting.

• Unlike the shell, UniCon allows processes to communicate on file descriptors other than
stdin and stdout . The UniCon description permits the user to specify which file
descriptors the process expects to be present, and connects the pipe appropriately.

Experience has shown that although the current textual syntax is somewhat cumbersome (the
graphical notation is simple), it is very easy to specify complex interconnections such as that found in
the KWIC indexer example.

4.3. Remote Procedure Call

Pipes and filters provide data-flow relations among independent processes. Remote procedure call
(RPC) complements that with an interprocess relation based on communication and control flow.
RPC has a natural abstraction relation with ordinary intraprocess procedure call, but it requires
substantial extra effort on the part of the programmer.

UniCon defines connector type RemoteProcCall. The implementation supports both Mach and
RTMach versions of this connector as M-remote-proc-call and RTM-remote-proc-call. They are
implemented for Mach 3.0 Interprocess Communication (IPC) Facility and RTMach IPC,
respectively.

Mach and RT Mach implement RPCs with message passing. The arguments of a remote call are
marshaled into a message and delivered to the process that defines the remote procedure; this process
unmarshals the arguments and calls the routine in that process; the return value is handled similarly.
The glue code that converts simple procedures to remote procedures is very tedious for software
engineers to create, so the designers of Mach and RT Mach provide a tool, called the Mach Interface
Generator (MIG), that can produce the glue code from simplified specifications of RPC routine
definitions.

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 37

For each player in a remote procedure call connection, the compiler keeps track of the location of the
source and/or object files that comprise the implementation of the process in which the player is
found.8 UniCon also keeps track of the RPCDef players and RPCCall players found in each process.
For each process that exposes RPCDef players in its interface, UniCon builds a MIG specification
containing the required definitions for each remote procedure declaration in that process. For
RPCCall players, UniCon keeps track of the MIG-generated files it needs to link with the process to
access remote procedures in other processes.

When the system has been completely parsed and all connections have been successfully made,
UniCon creates an Odinfile with the proper system construction steps. For each process doing RPCs
the following steps are required:

• Invoke the Mach interface generator for each MIG specification file constructed for the
process. This produces C source code for the RPC glue code.

• Compile the C source for the glue code into object files.

• Compile the C source code that turns the Process or SchedProcess implementation into a
heavyweight process (see Section 4.1.4).

• If the implementation of the Process or SchedProcess is C source, compile it as well.

• Link all the object files to form the Mach or Real-Time-Mach executable process.

4.4. Real-Time Scheduling

Pipes and remote procedure calls raise the abstraction level of connection, but do not stretch the
concept of connection much. It’s easy to think of RPCs in the conventional import/export model,
and even though import/export doesn’t quite match pipes, pipes are still binary and asymmetrical. In
order to investigate connectors of a substantially different form, we incorporated a connector for real-
time scheduling of type RTScheduler. The implementation supports the RT Mach realization,
defined as connector RTM-realtime-sched. In the simplest case, with independent processes, no data
or control passes between processes; they interact through competition for processor resources. As
described above, the scheduling task becomes more complex when additional interactions are
introduced, as through RPC.

The priority and period information for each SchedProcess component is sufficient for UniCon to
schedule the process in RT Mach. If the scheduling policy for the computer has been set to
rate_monotonic (with the Algorithm attribute) UniCon also packages up the trace, period, execution
time, and priority information, transmits it to the analysis tool for schedulability analysis, and reports
the results of the analysis.

Next, UniCon generates code for the schedulable processes. In RT Mach, the basis of scheduling is
lightweight processes, called threads.9 However, our real-time model requires scheduling for
heavyweight processes. The C code specified in the implementation of the SchedProcess component

8More than one Unix file is associated with a Mach or RT Mach process implementation. See
section 4.1.4 for further details.

9In Unix, a heavyweight process has only one thread, namely “main”. In Mach and RT Mach,
heavyweight processes can have more than one thread that execute in parallel. In RT Mach, these
threads are schedulable.

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 38

is the implementation of the thread to be scheduled. In order to satisfy both the model and the
operating system, UniCon builds a heavyweight process that creates, initializes, and schedules the
thread to run in the RT Mach environment. The resulting thread will run with the period and priority
specified. UniCon then builds a startup program that sets the scheduling policy in the RT Mach
environment to the one specified in the Algorithm attribute. It also generates Odinfile instructions
that build the SchedProcess component. If the SchedProcess component makes remote procedure
calls, the generation of the Odinfile is deferred until all information about necessary glue code files is
known (see Section 4.3 above). Finally, UniCon generates a shell script that initializes the RT Mach
system that the builder has just created. It executes the startup routine which sets the scheduling
policy for the processor and then sets the heavyweight processes in motion.

5 . Experience and Analysis

The UniCon processor is in many respects a quite conventional compiler. Its novelty lies in the
variety of high-level connectors it supports and the system configurations it can describe. The
substantial work of the development has not been the creation of the software itself, but simply under-
standing what’s required to achieve the desired functionality. This often involves re-examining
standard system facilities (e.g., linkers, pipes) in order to use them in more general ways than is now
customary.

We demonstrated the first version of UniCon in 1992. Both the language and the implementation are
in their second versions. We can now report on our experience with the system. Section 5.1 discusses
our experience with the system and is organized generally around types of connectors. Section 5.2
reports some performance data. Finally, Section 5.3 looks to the future.

5.1. Experience

The examples in this paper are among the simpler working examples from each of the architectural
styles we support. This section describes the implementations and some of the issues they brought to
light.

For pipes, files, and filters, the major challenge was implementing a general model that permitted
arbitrary configurations as described in Section 4.2. In addition to the matter of startup order, there
is also a matter of the correct order of construction: Unix processes do not actually have ports until
they are initialized at execution time. As a consequence, UniCon must set up code to create pipe
linkages at process initialization time.

To verify that UniCon provides a smooth bridge from architecture to code, we built the UniCon
compiler from a UniCon specification of itself. The compiler consists of 15 C source code modules,
1 lex specification, 1 yacc specification, and 16 C include files. This yields a total of approximately
11,900 lines of source of all types. The UniCon specification was generated semi-automatically using
the wrapper-generator discussed in Section 3.4 and was expressed in terms of the raw procedures and
data of the implementation. The result was fine-tuned by hand to produce the final specification. On
a Sun SPARCstation 10, building UniCon from source code took 1 min 43 sec to complete (wall
clock time). Of this, 1 min 24 sec was spent in the Odin utility compiling and linking the system,
leaving 19 sec of time attributable to the UniCon compiler.

Procedure call and pipe connectors cannot be mixed arbitrarily. Procedure calls take place within a
single address space, whereas pipe connectors are only meaningful at a process (hence name-space)
boundary. As a result, a composite implementation may either establish procedure call and data

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 39

access connections, or it may establish pipe connections. At present, the designer is responsible for
determining where process boundaries will fall. The component type structure helps the designer
identify the boundaries.

The usual method for using remote procedure call (RPC) in Mach requires substantial knowledge of
the underlying run-time library facilities, and at the very least a knowledge of the Mach Interface
Generator (MIG). UniCon saves the system builder from having to acquire any of this specialized
knowledge. When the RPCs make use of the simple, standard C language types known to the MIG, the
system builder need only connect the players in a UniCon specification to create a RPC connection.
This takes 3 or 4 lines for each call (one USES and two CONNECTs, or one ESTABLISH). If com-
plex types are involved, the builder need only add another line for each type definition (the
RPCTypeDef attribute) and one line for all the include files where the types can be found (the
RPCTypesIn attribute). For Example 3 (Figure 3, Program 5, Appendix D), two RPC calls and one
complex type definition required 10 lines of UniCon code. UniCon builds the glue code from these,
hiding the details from the system builder completely. If the system builder were not using UniCon,
but rather developing the application by hand, the builder would be required to know the MIG
specification language, create a MIG specification of the glue code, and then build an Odinfile that
invokes the MIG to create the glue code and compile and link it into the appropriate processes. If the
system builder were not using the MIG at all, but rather generating the glue code by hand, building
the system would require a very specialized knowledge of Mach and approximately 500 lines of C
code.

This example also reminded us that real code is often not as pure as the models suggest. The mod-
ules with the actual code for the real-time tasks called an assortment of library routines, including
printf and a routine to convert kernel return codes to error strings. It turns out that these display
information in a window to show the progress of the tasks, which is a surrogate for performing some
real-time task. However, our client did not originally include this external connection as part of the
interface of the component. This will turn out to be a relatively common case, as hooks for
debuggers, performance monitors, audit trails, and other tasks not directly related to the overt
function of the system are generally not regarded as part of its interface. We believe that some
facility for structuring the full interface of a component into the facets of interest to various classes of
users will be required; the PLBundle player type is an initial step.

Similarly, running real-time applications under RT Mach requires considerable overhead in process
and thread definition. UniCon makes this process transparent. In the implementation of a
SchedProcess component, the system builder specifies the implementation of the RT Mach thread, not
the process. UniCon then builds the heavyweight process "main" program that creates and properly
schedules the thread. UniCon compiles and links the thread and the main program to form the RT
Mach process. The system builder need not know any of the RT Mach underlying mechanism for
building processes. Mach 3.0 has the same models for lightweight threads and heavyweight processes
as RT Mach, so UniCon uses the same model for (non-real-time) processes in both operating systems.

From the implementation of the SchedProcess component type and the RTScheduler and
RemoteProcCall connector types we learned that UniCon is simple enough and "open" enough to
support the addition of new component, connector, player, and role types. In addition, the compiler
proved to be relatively easy to modify to include the new underlying mechanism for creating RT
Mach processes and for facilitating inter-process communication via RPC. Both of these experiences
indicate that we should find little difficulty in populating the UniCon language with new component
types and connector types and building systems from compositions of them. This should help us

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 40

close in on our goals of producing a formal taxonomy of component and connector types and of
taking advantage of useful mechanisms that already exist.

5.2. Performance

The cost of using UniCon has two components: the extra runtime cost imposed on the systems it
produces and the setup before runtime. The relevant cost measures are computation time for both
components and human time for setup. Whereas Section 5.1 discusses savings in human time that
result from not having to learn and operate sophisticated interaction mechanisms, this section
discusses computation time.

UniCon does not impose execution performance penalties after initialization. Some connectors
require initialization routines; beyond that, the running code is essentially the same as a programmer
would likely have produced without UniCon. More specifically,

• For systems of procedure calls and shared data, the executables produced by UniCon are the
same size as those that would be produced by hand by a system builder manually compiling
and linking the source files.

• Systems of pipes and filters require an initialization process as described in Section 4.2 to
establish the topology and set up the pipes. After this process is finished, no residue of
UniCon remains. UniCon initialization is slightly faster than the Unix shell; the same
algorithms and mechanisms are used in both cases, but the shell must parse and interpret the
commands.

• Similarly, there is no runtime performance penalty for systems of schedulable processes
built by UniCon. Again, the executables are the same size as those that would be built by a
system builder. This, however, assumes that a hand-built system would adhere to the same
stylistic restrictions that UniCon does, specifically the mapping of abstract real-time tasks to
a set of single-threaded heavyweight processes under RT Mach.

• For remote procedure calls, UniCon automates the recommended process of using the Mach
Interface Generator.

To provide a feeling for pre-runtime costs, Table 11 shows the actual build times for our three
examples.

Example Total Build Time Time in Odin Time in UniCon
1: KWIC pipes 13 seconds 11 seconds 2 seconds
2: heterogeneous 30 seconds 24 seconds 6 seconds
3: real-time 6 minute 12 seconds 6 minute 5 seconds 7 seconds

Table 11. Build times for three examples

Additionally, the wrapper-generator discussed in Section 3.4 was used to produce some of the
UniCon specifications in the examples. The execution time for the wrapper-generator to produce the
components stack and reverse (see Appendix C) was approximately 1 second. The wrapper-
generator took between 1 and 16 seconds to produce each wrapper for the UniCon specification of
itself.

5.3. Conclusion

We set out to provide improved support for abstractions that software developers use in designing the
architectures of software systems. This required models that build up from the current module
interconnection tools. We developed notation and tools to implement the new models and (1)

Mary Shaw Abstractions for Software Architecture and Tools to Support Them 41

demonstrated their adequacy for existing tasks (i.e., nothing serious left out) and (2) argued by ex-
ample their appropriateness for the currently-unsupported activities designers appear to engage in.

Until now, compositional design has been based primarily on ad-hoc choice, informal experience,
and local expertise. This work is a step toward making this knowledge precise, semantically-based,
and available to engineers as a matter of routine practice. Just as we now have a science of algorithms
and data structures for making design tradeoffs and reasoning about properties of code, we shall also
have a science for supporting large-scale composable systems.

The principled use of compositional structures will have a dramatic effect on software production. It
will (1) permit choosing design paradigms to match desired system characteristics, (2) allow de-
veloping application-specific frameworks and reference architectures, (3) enable development
techniques (e.g., formal analysis, software reuse) to exploit compositional properties of systems, (4)
support a high level of parameterization so that large systems can be more easily designed, un-
derstood, maintained, and enhanced, and (5) enable reusing old code as well as provide ways to
recover partial architectural information from existing systems.

Acknowledgments

Our collaborators at Carnegie Mellon have provided a continuing forum for exploring these ideas. We particularly
appreciate critical and stimulating discussions with colleagues in the School of Computer Science, especially David
Garlan, and with participants in the regular research seminar, especially Judy Bishop. Much of the experience we
needed to implement the SchedProcess component in UniCon came from a collaboration with engineers, especially
Raj Rajkumar, from Carnegie Mellon’s Software Engineering Institute, where they are using UniCon as a front end
to describe, analyze, and prototype real-time systems. Fuchun Jiang worked on an early version of the system.

This research was supported by the Carnegie Mellon University School of Computer Science and Software
Engineering Institute (which is sponsored by the U.S. Department of Defense), by a grant from Siemens Corporate
Research, and by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel Command, USAF, and
the Advanced Research Projects Agency (ARPA) under grant F33615-93-1-1330. The US Government is authorized
to reproduce and distribute reprints for Government purposes, notwithstanding any copyright notation thereon.
Views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of Wright Laboratory, the Department of Defense, the
United States Government, Siemens Corporation, or Carnegie Mellon University. Theodore L. Ross was supported
through Digital Equipment Corporation’s Graduate Engineering Education Program.

Mary Shaw Absatractions for Software Architecture and Tools to Support Them A-42

Appendix:
Collected Syntax

C o m p o n e n t ::=
COMPONENT CompTemplateName

INTERFACE IS
TYPE ComponentType
{ P r o p e r t y L i s t } #
{ P l a y e r L i s t } #

END INTERFACE
IMPLEMENTATION IS

{ P r o p e r t y L i s t } #
P r i m C o m p o n e n t |
C o m p C o m p o n e n t

END IMPLEMENTATION
END CompTemplateName

P l a y e r L i s t ::=
{ PLAYER PlayerName IS PlayerType
{ P r o p e r t y L i s t

END PlayerName } # } +

C o n n e c t o r ::=
CONNECTOR ConnTemplateName

PROTOCOL IS
TYPE ConnectorType
{ P r o p e r t y L i s t } #
R o l e L i s t

END PROTOCOL
IMPLEMENTATION IS

Pr imConnec to r
END IMPLEMENTATION
END ConnTemplateName

R o l e L i s t ::=
{ ROLE RoleName IS RoleType
{ P r o p e r t y L i s t

END RoleName } # } +

P r i m C o m p o n e n t ::=
{ I m p l e m e n t a t i o n } +

I m p l e m e n t a t i o n ::=
VARIANT ImplName IN F i l e S p e c
{ P r o p e r t y L i s t

END ImplName } # } +

C o m p C o m p o n e n t ::=
{ C o m p U s e s | C o n n U s e s |

B i n d | C o n n e c t } +

C o m p U s e s ::=
USES CompInstance

INTERFACE CompTemplateName
{ P r o p e r t y L i s t

END CompInstance } #

C o n n U s e s ::=
USES ConnInstance

PROTOCOL ConnTemplateName
{ P r o p e r t y L i s t

END ConnInstance } #

B i n d ::= S i m p l e B i n d | A b s t r a c t B i n d

S i m p l e B i n d ::=
BIND ExternalPlayer TO InternalPlayer

A b s t r a c t B i n d ::=
BIND ExternalPlayer TO ABSTRACTION

P r o p e r t y L i s t
END ExternalPlayer

C o n n e c t ::=
CONNECT PlayerName TO RoleName |
CONNECT RoleName TO PlayerName

E s t a b l i s h ::=
ESTABLISH ConnTemplate WITH
{ PlayerName AS RoleName } +
{ P r o p e r t y L i s t } #

END ConnTemplate

Pr imConnec to r ::= BUILTIN

P r o p e r t y L i s t ::=
{ AttributeName (P r o p e r t y) } +

References
[Abowd et al 93] Gregory Abowd, Robert Allen, and

David Garlan. Using Style to Understand
Descriptions of Software Architecture. Proc First
ACM SIGSOFT Symposium on the Foundations
of Software Engineering, Dec 1993.

[Allen & Garlan 94a] Robert Allen and David Garlan.
Beyond Definition/Use: Architectural
interconnection. Proc Workshop on Interface
Definition Languages, 1994.

[Allen & Garlan 94b] Robert Allen and David Garlan.
Formalizing Architectural Connection. Proc
Sixteenth International Conference on Software
Engineering, 1994.

[Barstow & Wolf 93] David Barstow and Alex Wolf
(track chairs). Design Methods and Software
Architectures Track. Proc 7th International
Workshop in Software Specification and Design,
IEEE Press, 1993.

[Bell & Newell 71] C. Gordon Bell and Allen Newell.
Computer Structures: Readings and Examples.
McGraw-Hill 1971.

[Boehm & Scherlis 92] Megaprogramming. Proc
Software Technology Conference 1992, DARPA.

[Callahan & Purtilo 91] John R. Callahan and James
M. Purtilo. "A Packaging System for
Heterogeneous Execution Environments." IEEE
Trans. on Software Engineering, 17(6): 626-635,
June 1991.

[Campos & Estrin 78] SARA Aided Design of
Software for Concurrent Systems. Proc. National
Computer Conference, 1978.

[Cooprider 79] L. W. Cooprider. The Representation of
Families of Software Systems. PhD Thesis,
Carnegie Mellon University. Apr 1979.

[Dean & Cordy 93] Thomas R. Dean and James R.
Cordy. Software Structure Characterization Using

Mary Shaw Absatractions for Software Architecture and Tools to Support Them A-43

Connectivity. Proc. Workshop on Studies of
Software Design. Lecture Notes in Computer
Science, Springer-Verlag, to appear 1995.

[DeRemer & Kron 76] Frank DeRemer and Hans H.
Kron. Programming-in-the-Large versus
Programming-in-the-Small. IEEE Trans. on
Software Engineering, SE-2(2):80-86, June 1976.

[Garlan & Shaw 93] David Garlan and Mary Shaw. An
Introduction to Software Architecture. In V.
Ambriola and G. Tortora (eds), Advances in
Software Engineering and Knowledge Engineering,
vol. 2, World Scientific Publishing Company,
1993, pp.1-39.

 [Garlan & Shaw 94] David Garlan and Mary Shaw.
Software Development Assignments for a Software
Architecture Course. Submitted for publication.

[Habermann & Tichy 92] Nico Habermann and Walter
Tichy. Future Directions in Software Engineering.
Dagstuhl Seminar Report 32, Feb 1992.

[Hayes-Roth & Tracz 93] DSSA Tool Requirements for
Key Process Functions. Unpublished manuscript,
version 1.0, Oct 1993

[Hoare 72] C. A. R. Hoare. Proof of Correctness of
Data Representations. Acta Informatica, vol 1 no
4, 1972 pp. 271-281.

[Kitayama et al 93] Takuro Kitayama, Clifford W.
Mercer, Tatsuo Nakajima, Stefan Savage, Hideyuki
Tokuda, and Jim Zelenka. Real-Time Mach 3.0
User Reference Manual. School of Computer
Science, Carnegie Mellon University, Pittsburgh
PA Aug 1993. Preliminary edition.

[Klein et al 93] M. H. Klein, T. Ralya, B. Pollak, R.
Obenza, and M. G. Harobur. A Practitioner’s
Handbook for Real-Time Analysis: Guide to Rate
Monotonic Analysis for Real-Time Systems.
Kluwer Academic Publishers, 1993.

[Lam & Shankar 94] A Theory of Interfaces and
Modules I—Composition Theorem. IEEE Tr on
Software Engineering, 20, 1, Jan 1994, pp.55-71.

[Lamb 95] David A. Lamb (ed). Proc. Workshop on
Studies of Software Design. Lecture Notes in
Computer Science, Springer-Verlag, to appear
1995.

[Magee et al 89] Jeff Magee, Jeff Kramer, and Morris
Sloman. Constructing distributed systems in
CONIC. IEEE Transactions on Software
Engineering, SE-15 (6) pp.663-675, 1989.

[Magee et al 93] Jeff Magee, Nandakar Dulay, and Jeff
Kramer. Structuring parallel and distributed
programs. Software Engineering Journal 8 (2)
pp.73-82, March 1993.

[Mettala & Graham 92] Erik Mettala and Marc H.
Graham. The Domain-Specific Software
Architecture Program. CMU/SEI Report
CMU/SEI-92-SR-9, June 1992.

[Mitchell et al 79] J. G. Mitchell, W. Maybury, and R.
E. Sweet, Mesa Language Manual. Tech. Report
CSL-79-3, Xerox Corporation, Palo Alto Research
Center, Apr 1979.

[Nakajima et al 93] T. Nakajima, T. Kitayama, H.
Arakawa, and H. Tokuda. “Integrated Management
of Priority Inversion in RT-Mach.” Proc. IEEE
Real-Time Systems Symposium, Dec 1993.

[Perry 87] Dewayne E. Perry. Software Interconnection
Models. Proc. Ninth International Conference on
Software Engineering, IEEE Computer Society
Press, Mar 1987.

[Perry & Wolf 92] Dewayne E. Perry and Alexander L.
Wolf. Foundations for the Study of Software
Architecture. ACM SIGSOFT Software
Engineering Notes, 17(4):40-52, Oct 1992.

[PLoP 94] Proc. First Annual Workshop on Pattern
Languages for Programming. To appear.

[Prieto-Diaz & Neighbors 86] R. Prieto-Diaz and J. M.
Neighbors. Module Interconnection Languages.
Journal of Systems and Software, 6(4), Nov 1986,
pp. 307-334.

[Purtilo 90] James Purtilo. The Polylith Software
Bus. Dept. of Computer Science, Univ. Maryland,
Tech. Rep. 2469, 1990.

[Rapide 93] The PAVG Group. The Rapide-1
Executable Language Reference Manual; the
Rapide-1 Types Reference Manual. Stanford
University reports, Mar 1993.

[Ritchie & Thompson 74] D. M. Ritchie and K.
Thompson. “The UNIX Time Sharing System.”
Comm ACM, 17, 7, July 1974, pp. 365-375.

[Shaw 81] Mary Shaw (ed.) Alphard: Form and
Content. Springer-Verlag 1981.

[Shaw 88] Mary Shaw. Toward Higher-Level
Abstractions for Software Systems. Proc. Tercer
Simposio Internacional del Conocimiento y su
Ingerieria, Oct 1988.

[Shaw 95] Mary Shaw. Making Choices:
A Comparison of Styles for Software Architecture.
Carnegie Mellon University Technical Report,
1995.

[Shaw & Garlan 93] Mary Shaw and David Garlan.
Characteristics of Higher-level Languages for
Software Architecture. Carnegie-Mellon University
Technical Report, 1993.

[Thomas 76] J. W. Thomas. Module Interconnection in
Programming Systems Supporting Abstraction.
PhD Thesis, Brown University. June, 1976.

[Tichy 79] Walter F. Tichy. Software Development
Control Based on Module Interconnection. Proc.
4th International Conference on Software
Engineering, Munich, 1979, pp. 29-41.

[Wing 94] Jeannette M. Wing (ed). Proc. Workshop on
Interface Definition Languages. Carnegie Mellon
technical report CMU-CS-94-WIDL-1, Jan 1994.

Mary Shaw Absatractions for Software Architecture and Tools to Support Them A-44

Footnotes

