Robotics Thesis Defense

  • Remote Access - Zoom
  • Virtual Presentation - ET
  • Ph.D. Student
  • Robotics Institute
  • Carnegie Mellon University
Thesis Orals

Robust and Scalable Perception For Autonomy

Autonomous mobile robots have the potential to drastically improve the quality of our daily life. For example, self-driving vehicles could make transportation safer and more affordable. To navigate complex environments, such robots need a perception system that translates raw sensory data to high-level understanding. This thesis focuses on two fundamental challenges in learning such perception systems: robustness and scalability.

First, how can we learn a perception system that is robust to different types of variance in sensory data? For example, the sensory data of an object may look completely different depending on the distance and the presence of occlusion. Also, a perception system may encounter objects it has never seen during learning. To model such variances, we develop approaches that make use of novel characterizations of context, visibility, and prior.

Second, how can we rearchitect perception that requires less human supervision during learning? For example, standard perception software stacks build perceptual modules to recognize objects and forecast their movements. Training these modules requires object labels such as trajectories and semantic categories. To learn from large-scale unlabeled logs, we propose freespace forecasting -- a new self-supervised perception task.

Thesis Committee:
Deva Ramanan (Chair)
David Held
Christopher Atkeson
Drew Bagnell
Raquel Urtasun (Waabi and University of Toronto)

Additional Information

Zoom Participation. See announcement.

For More Information, Please Contact: