Towards a Formal Verification of OWL-S
Process Models *

Anupriya Ankolekar, Massimo Paolucci, and Katia Sycara

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA
{anupriya,paolucci,katia}@cs.cmu.edu

Abstract. In this paper, we apply automatic tools to the verification of
interaction protocols of Web services described in OWL-S. Specifically,
we propose a modeling procedure that preserves the control flow and the
data flow of OWL-S Process Models. The result of our work provides
complete modeling and verification of OWL-S Process Models.

1 Introduction

Verification of the interaction protocol of Web services is crucial to both the im-
plementation of Web services and to their use and composition. The verification
process can prove important and desirable properties of the control flow of a Web
service. At implementation time, a Web service provider will want to verify that
the protocol to be advertised is indeed correct, e.g. does not contain deadlocks.
A Web service provider may also want to guarantee additional properties, e.g.
purchased goods are not delivered if a payment is not received.

Even if the Web service provider verifies the correctness of the programming
logic behind its Web services, it will still need to verify the advertised inter-
action protocol. The mapping from the programming logic of the Web service
to the interaction protocol of the Web service is typically lossy. Thus, the Web
service provider will need to verify that claims that were true of the Web service
program also hold true of the interaction protocol. Furthermore, the interaction
protocol may make use of several Web services provided by the same Web ser-
vice provider or possibly by other third-party providers. In either case, verifying
the programming logic of multiple Web services is impracticable. In these cases,
verifying the interaction protocol itself is both possible and useful.

During composition and use of Web services, a Web service client may want
to verify the Web service provider’s interaction protocol to obtain a guarantee
that the protocol is correct, e.g. it does not contain an infinite loop, and that
it conforms to the client’s requirements. For example, the client may want to
ensure that whenever a payment is received by the service provider, the goods

* This research was funded by the Defense Advanced Research Projects Agency as
part of the DARPA Agent Markup Language (DAML) program under Air Force
Research Laboratory contract F30601-00-2-0592 to Carnegie Mellon University.

2 Ankolekar et al.

are delivered to the client, or that there is the possibility of reimbursement, if
the goods are returned.

In this paper, we explore the verification of OWL-S! interaction protocols
using automatic verification tools, such as the SPIN model-checker [8]. OWL-S is
one of the leading standards for the description of Web services on the Semantic
Web. The OWL-S Process Model describes the interaction protocol between
a Web service and its clients. Such protocols are inherently non-deterministic
and can be arbitrarily complex, containing multiple concurrent threads that
may interact in unexpected ways. By performing an efficient exploration of the
complete set of states that can be generated during an interaction between a
Web service and its clients, SPIN is able to verify numerous properties of the
OWL-S Process Model.

The work presented in this paper builds on work presented in [2]2. In par-
ticular, we relaxed many of the abstractions in the previous version, added the
modeling of loops and enriched the literature review. The rest of this paper is
organized as follows. After reviewing related work in section 2, we provide a
quick overview of OWL-S 1.1 in section 3, using a running example based on
the Amazon Web service. In section 4, we provide an introduction to verification
with Spin. In section 5, we then define a mapping of the Amazon example from
OWL-S 1.1 to SpIN’s PROMELA language, which is used to construct models
that the SPIN system can analyze. We then describe the verification of claims
on the Amazon Process Model using SPIN in section 6. Finally, in section 7 we
will discuss our results and future work.

2 Related Work

Previous work on OWL-S verification is scant. Narayanan et al. [9] proposed a
Petri Net-based operational semantics, which models the control flow of a Process
Model exclusively®. On the basis of this mapping of OWL-S Process Models to
Petri Nets, a number of theorems are proven on the computational complexity
of typical verification problems, such as reachability of states and discovery of
deadlocks. The results show that the complexity of the reachability problem for
OWL-S Process Models is PSPACE-complete. This result is not surprising given
the complexity of the OWL-S Process Modeling language.

Our approach improves on Narayanan’s seminal work in three directions.
First, we provide a model of Web service data flow in addition to control flow. As
a result, the verification procedure can detect harmful interactions (see section
5.1) between data and control flow that would be undetected otherwise. Second,
as part of our modeling methodology, we translate an OWL-S Process Model

YOur work is based on the OWL-S 1.1 release available at
http://www.daml.org/services/owl-s/1.1/.

2 The authors are in debt to the participants of the workshop on “Semantic Web
Services” at ISWC2004 for their useful comments.

3 Narayanan’s semantics was defined for an earlier version of OWL-S (namely DAML-S
0.5), which did not model data-flow.

Towards a Formal Verification of OWL-S Process Models 3

into a simpler model that nevertheless preserves all the essential behavior to
be verified. Third, we provide initial results on the actual verification of OWL-
S Process Models using existing verification tools such as SPIN. The result of
our work is a complete procedure for the modeling and verification of OWL-S
Process Models.

While we are aware of only one other work on the verification of OWL-S
Process Models, there has been a considerable amount of work on the verification
of BPEL [1] Models. For example, WSAT (Web Service Analysis Tool) [13, 6]
provides a formal verification of composite Web services expressed in BPEL
and WSDL using guarded automata (GA) to construct the model, and then
mapping the GA into PROMELA using SpiNas verifier. A different approach to
the verification of BPEL is followed by [7], which is based on message sequence
charts, while [11] provide a Petri Net semantics and verification model.

Unfortunately, there is no clear mapping between OWL-S and BPEL. BPEL
aims to represent the composition of Web services, showing how different ser-
vices can interact to solve a problem. Consequently, any verification of BPEL
compositions aims to check that the different composed services can indeed work
together. OWL-S, on the other hand, provides a representation of the Process
Model of one single Web service, leaving the composition problem to some other
entity, typically a synthetic planner. The focus here is on verifying whether the
particular Web service has the properties that the client expects in order to make
use of it. It is therefore quite difficult to export the results of work on verifying
BPEL to the verification of OWL-S Web services.

3 OWL-S Process Model

The OWL-S Process Model is organized as a workflow of processes. Each pro-
cess is described by three components: inputs, preconditions and results. Results
specify what outputs and effects are produced by the process under a given con-
dition. For example, a process may have different results depending on whether
the client is a premium user, or an ordinary user. OWL-S processes describe the
information transformation produced by the Web service; while preconditions
and effects describe the knowledge state transition produced by the execution of
a Web service.

Processes in the workflow are related to each other by data flow and con-
trol flow. Control flow allows the specification of the temporal relation between
processes. OWL-S supports a wide range of control flow mechanisms includ-
ing sequentially executed processes, spawning of concurrent processes, synchro-
nization points between concurrent processes, conditional statements and non-
deterministic selections of processes. OWL-S distinguishes between atomic and
composite processes. Atomic processes are indivisible processes that result in a
message exchange between the client and the server. Composite processes are
used to describe the control flow relation between processes. Fig. 1 shows a
simple fragment of the Process Model adopted by Amazon.com’s Web service.
The nodes of the tree correspond to composite processes that represent different

4 Ankolekar et al.

Sequence
Shop
Choice Ir
Browse BookFound
ot —mmmmmomommmeTTTos + Product
;: then el|se
Atomic , Atomic

Artist3earch e Fail

Atomic : | Atomic

AuthorSearch | /| AddToShoppingCart
Book - N
Product

Fig. 1. The Process Model of Amazon.com’s Web service

control constructs such as Choice for non-deterministic choices, Sequence for
deterministic sequences of processes, and If conditionals. Atomic processes are
represented as the leaves of the tree. For example, Author Search requires the
client to provide information such as the name of an author. It then reports
books found written by that author.

Data flow allows the specification of the relation between inputs and outputs
of processes. An example of data flow is shown using dashed lines in Fig. 1.
An output of the process AuthorSearch is a book which is then passed to the
parent process, Browse and further up until it reaches the input of the process
AddToShoppingCart. The scope of the data flow is limited to within a composite
process. Therefore processes in a composite process can exchange data among
themselves or with the parent process, but with no other processes. As the
figure shows, data exchanges between two arbitrary processes, as for example
AuthorSearch and AddToShoppingCart result from the composition of data flow
links in the whole Process Model.

4 Model Checking with SpPIN

OWL-S Process Models are typically verified using human inspection, simula-
tion and testing. However, due to their complex and concurrent nature, OWL-S
Process Models are not very amenable to such verification techniques. Instead,
we use model checking [5], a method that has been successful in the verification
of distributed systems, such as Web services [6, 12]. Model checking exhaustively
checks all possible executions of a system to verify that certain properties hold.
It can thus formally prove the correctness of a system.

To construct such proofs, model checking requires two decisions to be made
[8]. The first decision is about what claims to prove: a claim states invariant prop-
erties of the code, e.g. that a variable will always be instantiated or that it will

Towards a Formal Verification of OWL-S Process Models 5

always reach a given value. Typically, two kinds of properties are proven about
a given protocol: safety properties, which guarantee that specified undesired
states, such as deadlocking states, are never reached; and liveness properties,
which specify that desired states are eventually reached.

The second decision relates to what and how to model, in other words which
aspects of the protocol are relevant to the claims to be verified, and how to ensure
that the model of the protocol preserves the behaviors to be checked. Certain
aspects of the protocol may be verified better in other ways, for instance type
safety can be ensured using a type checker. Moreover, a simplified model of the
implementation, one that captures the essentials of the design, but avoids the full
complexity of the implementation, can often be verified easily, even when the full
implementation cannot. Thus, generating a verification model for an interaction
protocol entails the translation of the protocol into a formal specification, which
encapsulates the modeling decisions and specifies the claims to be verified.

This specification is input to a model checking tool, such as SPIN, to au-
tomatically verify that the protocol satisfies the claims. If SPIN verifies that a
claim is true in the PROMELA specification, given that the specification captures
the relevant behavior of the OWL-S Process Model, we know that the claim is
also true in the corresponding Process Model. On the other hand, if the protocol
contains an error, a model checker can provide a counter-example, identifying
the conditions under which the error occurs. The claim may still hold in the
OWL-S Process Model, because the PROMELA specification does not capture
the full behavior of the Process Model. In this case, the counterexample that
Spin provides can be analyzed and simulated in the actual Process Model. If
this does produce faulty behavior, then a bona fide bug has been discovered,
else a spurious bug [5] has been identified.

In this work, we use the SPIN model checker, a generic verification system
that supports the design and verification of a system of asynchronous processes.
SPIN accepts design specifications in PROMELA (a Process Meta Language) and
correctness claims in LTL (Linear Temporal Logic). PROMELA is akin to a highly
concurrent programming language, while LTL enables the representation of for-
mulae about possible execution paths of a process. Due to space limitations,
the readers are referred to Chapters 3 and 6 of [8] for a comprehensive discus-
sion of PROMELA and LTL. In the rest of the paper, we will describe aspects of
PrROMELA and LTL only as relevant to our work.

5 Modeling OWL-S Process Models in Promela

The mapping of OWL-S to PROMELA hinges on the decision of which aspects
of the OWL-S Process Model are to (and can) be expressed in PROMELA, and
on how to perform such a mapping. In the rest of this section, we describe
the mapping of OWL-S Process Models to PROMELA models. Throughout this
section, the Process Model of the Amazon Web service (Fig. 1) [10] will be used
as a running example to illustrate the mapping rules.

6 Ankolekar et al.

(1) proctype Shop () {

(2) chan syncChan = [1] of { int,mtype };
(3) chan dataChan = [1] of { int };

(4) pid x1, x2;

(5) x1 = run Browse(syncChan, dataChan);

(6) if

) :: syncChan??eval(xl),done ->

(8) x2 = run ProductFound(syncChan, dataChan);
(9) if :: syncChan??eval(x2),done -> skip; fi
(10) f£fi;

an ¥

Fig. 2. The Shop Process

Modeling Composite Processes OWL-S Processes map naturally onto pro-
cesses in PROMELA. Processes in PROMELA are introduced by proctype and
are instantiated with the run operator. For example, Fig. 2 shows the result of
the translation of the top-level Shop process to PROMELA. Shop, being a top-
level process, does not take any arguments. Instantiated processes are inherently
concurrent. Thus, Browse and ProductFound run concurrently with Shop.

In PROMELA, if processes are to be executed in a particular order, e.g. in a
sequence, they must be explicitly synchronized. Each parent composite process,
therefore, creates a syncChan, a typed channel for control flow*, and optionally
an additional typed channel for data flow, dataChan, to be used by its child pro-
cesses. Channels are used to model data flow between processes and can be either
globally scoped or locally scoped within a single process. Channels can have a
predetermined storage capacity. When the channel capacity has been reached,
additional messages sent to the channel will be dropped. Receive statements that
retrieve messages from channels block until a message is present in the channel.
Fig. 2 shows the definition of these channels, within the Shop process, in lines
2-3. The channels have a storage capacity of at most one message. They are
passed to the processes Browse and ProductFound (lines 5 and 8 resp.).

The syncChan channel holds tuples consisting of an integer, corresponding
to the process id of the sending process, and done. Messages sent to dataChan
are integers, representing the data values sent via data flow links (see below).
PROMELA supports all the traditional programming language types such as int,
char, boolean, arrays and records. In addition, PROMELA supports a form of

4 An alternative to channels is the use of variables, as follows: a process would set
a particular synchronization variable just before it terminates and other processes
would wait for the variable to become true before executing. Although this mech-
anism is attractively simple, it fails when multiple concurrent processes are used.
Since PROMELA admits only two kinds of scope, global or local to a single process,
any synchronization variable must necessarily be globally defined. However, global
variables may be overwritten when multiple instances of processes can be spawned
dynamically.

Towards a Formal Verification of OWL-S Process Models 7

(1) proctype SplitJoin(chan syncChan, dataChan) {
(2) chan childSync = [2] of { int,mtype I};

(3) pid childA = run A(childSync);

(4) pid childB = run B(childSync);

(5) if

(6) :: childSync??eval(childA) ,done ->
(7 if

(8) :: childSync?7eval(childB) ,done;
(9 fi

(10) f£i

(11) syncChan!_pid,done;

(12)}

Fig. 3. Implementation of a prototypical SplitJoin statement

enumerated type called mtype, which is typically used to describe message types.
However, PROMELA does not support an OOP-style (Object-Oriented Program-
ming type hierarchy.

Modeling Split and SplitJoin Since processes in PROMELA are intrinsically
concurrent, Split and SplitAndJoin can be naturally implemented as follows:
the counterpart of each construct is a process in PROMELA, which simply spawns
all its child processes. At this point, a Split process would immediately termi-
nate, whereas a SplitAndJoin process would wait for the termination of the
processes it spawned.

Since there are no Split and SplitAndJoin statements in the Amazon ex-
ample, Fig. 3 shows a prototypical implementation of a SplitAndJoin in lines
3-4. The process spawns off two processes A() and B() with no data flow link in
between. The guards in lines 6 and 8 check whether childSync contains a done
message sent by childA or childB, respectively. The entire SplitAndJoin pro-
cess blocks until the guard becomes true, thus synchronizing the process with
the termination of its child processes. Finally, in line 11, the process signals its
own termination. The implementation of a Split statement would be identical,
but skip lines 5-10, which implement the Join synchronization.

Modeling Sequences While concurrent processes can be implemented in a rel-
atively straightforward way, the modeling of OWL-S sequences requires explicit
synchronization, which is similar to the synchronization proposed for SplitJoin.
We implement sequences by first spawning off the first process in the list, block-
ing until the process terminates, then spawning off the second process. The
implementation of the Shop process, a sequence of Browse and ProductFound
processes is shown in Fig. 2. The PROMELA specification of Shop first spawns the
Browse process in line 5. In the if statement, the execution of Shop is blocked
(line 7) until it receives a done message from Browse, signaling that the Browse
process is complete. Shop then spawns ProductFound (line 8) and waits for it to
complete before terminating itself.

8 Ankolekar et al.

(1) proctype Browse (chan syncChan, dataChan) {
(2) chan childSync = [1] of { int,mtype I};

(3) chan childData = [1] of { int };

(4) pid child; int product;

(5) if
(6) :: true -> child =
run AuthorSearch(childSync, childData);
(7 if
(8) :: childData?product -> dataChan!product;
(9) :: childSync?7eval(child) ,done;
(10) fi
(11) :: true -> child =
run ArtistSearch(childSync, childData);
(12) if
(13) :: childData?product -> dataChan!product;
(14) :: childSync?7eval(child) ,done;
(15) fi
(16) fi;
(17) syncChan!_pid,done;
(18)%}

Fig. 4. Choice and Conditionals: the Browse Process

Modeling Choices and Conditionals OWL-S Choices and Conditionals are
both implemented using PROMELA’s guarded non-deterministic choice state-
ments if :: fi. A non-deterministic choice in PROMELA is defined by an if
statement, where all guard conditions are true. The implementation of Browse,
shown in Fig. 4, provides an example of a choice between two atomic processes,
AuthorSearch and ArtistSearch. The conditions of the if statement at lines
6 and 11 are both true, so PROMELA non-deterministically chooses one of the
branches for execution. After spawning the chosen process, the execution blocks,
waiting for the process to complete, and then sets the output product.

In OWL-S conditions occur in Result statements and if statements. A
Result condition specifies when a given output or effect is generated, an if
is defined as part of the control construct. OWL-S Result conditions reflect
the state of the server. For example, while interacting with a Web service like
Amazon’s, the client may discover that the book being sought is not available.
Similarly, if conditions in OWL-S depend on the knowledge of the agent at
execution time, in particular on the effects of previous steps and their interac-
tion with the agent’s knowledge. From the point of view of software verification,
such a condition could be considered a random variable, whose value cannot
be known at verification time and may equally be true or false. We therefore
model Results and if statements as non-deterministic choice. This forces the
verifier to evaluate the correctness of both branches of the Model. An OWL-S
conditional is implemented in a similar way to OWL-S Choice, but with the
if condition as a guard to the then statement and an else guard to the else

Towards a Formal Verification of OWL-S Process Models 9

(1) proctype AuthorSearch (chan syncChan, dataChan) {
(2) if /* implement conditional outputs */

3 :: true -> atomic {

(4) int bookResult= 1;
(5) dataChan!bookResult;}
(6) :: true -> skip

(7 fi;

(8) syncChan! _pid,done;

9

Fig. 5. Atomic process: the AuthorSearch Process

statement. According to PROMELA semantics, the else guard is only true, if all
other guards are false.

Modeling Atomic Processes Finally, we present the mapping of an atomic
process, which produces different results, to PROMELA. We model the selection of
results with a non-deterministic choice. The implementation of the atomic pro-
cess AuthorSearch is shown in figure 5. The conditional outputs are specified in
lines 3 and 6 with a non-deterministic choice. If line 3 is selected, then the variable
bookResult is assigned to 1 (line 4) and its value is sent out on the data channel
(line 5). The other atomic processes, ArtistSearch and AddToShoppingCart
can be specified analogously.

Modeling Data Flow For a given data flow link that maps outputs to in-
puts, one would ideally like a guarantee that the class of the input always sub-
sumes the class of the output. Verifying this using SPIN would require the
subsumption relations in the ontology of the client to be represented within
the PROMELA model. In addition, SPIN would need to be able to compute a
subsumption hierarchy of classes. Since this would immediately overwhelm the
verifier, we abstract from the actual values of inputs and outputs. Instead, the
types of inputs and outputs are modeled as integers and data flow links as chan-
nels. Inputs that are not bound by a data flow link are expected to be initialized
with some suitable value, usually 0. The evaluation of type subsumption claims
are deferred to a pre-processor, such as a type-checker or a reasoner, that can
methodically verify the integrity of all data flow links.

The data flow is represented by a variable that represents the output and the
dataChan channel that transfers data between processes. Different parts of the

(1) proctype AddToShoppingCart (chan syncChan, dataChan) {
(2) int product; dataChan?product;

(3) assert(product);

(4) syncChan!_pid,done;

(&) ¥

Fig. 6. Data flow: the AddToShoppingCart Process

10 Ankolekar et al.

(1) proctype Repeat-While(chan syncChan, dataChan) {
(2) int v_1 = v_1_init;
(3) int v_2 = v_2_init;

(4) do

(5) it ¢c > p

(6) :: else -> break
(7) od

(8) syncChan! _pid,done;
9 3}

Fig. 7. Implementation of a prototypical Repeat-While statement

data flow have been represented in the samples code shown above. For instance,
lines 3 to 5 of Fig. 5 represent the output bookResult and the transmission of its
value on the dataChan channel. Lines 8 and 13 of Fig. 4 show how channels are
chained in composite processes, where the results of child processes are trans-
mitted as the results of the parent process. This chaining implements the data
flow chain, shown in Fig. 1. Finally, the data transmitted across all the links of
the chain should reach the input of another atomic process and be consumed
there. Line 3 of Fig. 6 shows the implementation of the input product and its
instantiation with the value coming from dataChan. The line assert (product)
(line 3) specifies a claim on the state reached, namely that the value of product
should not be zero, i.e. the input is instantiated to some value.

Modeling Loops There are two kinds of loops in OWL-S: the Repeat-While
process and the Repeat-Until process. OWL-S loops have a loop condition c,
a process p that is executed during every iteration of the loop and a number
of variables, v_i that are local to the loop. Some of these variables may be
referenced in the loop condition c.

PROMELA supports loops through the guarded do :: od statements. As an
example of the implementation of loops, the definition of the Repeat-While
process using do is shown in Fig. 7. The process first declares and initialises the
loop variables, v_1 and v_2, in lines 2 and 3 respectively. Then, the process enters
the do loop, checking during each iteration that the condition c is true (line 5). If

(1) proctype Repeat-Until(chan syncChan, dataChan) {
2) int v_1 = v_1_init;
(3) int v_2 = v_2_init;

4) p;

(5) do

(6) i lc > p

7) :: else -> break
(8) od

Fig. 8. Implementation of a prototypical Repeat-Until statement

Towards a Formal Verification of OWL-S Process Models 11

Choice
Browse

Atomic Atomic

ArtistSearch AuthorSearch
Artist - Author

Fig. 9. An example of interaction between data and control flow in OWL-S

so, the process p is executed; otherwise, the loop is broken (line 6) and the process
signals its termination (line 8). The Repeat-Until statement is implemented
analogously (Fig. 8) with two key differences. The loop process p is executed once
before checking the loop condition c. Secondly, in the Repeat-Until construct,
the condition c is a termination condition, such that the loop terminates when
c is true. Therefore, in the do loop, the loop process is executed if the condition
is not satisfied.

5.1 Verifying Interaction between Data and Control Flow

Data and control flow can often interact in unexpected ways. The simple process
model depicted in Fig. 9 shows one such interaction that may prove harmful.
The figure depicts a choice process, named Browse, that can be realized by
either an atomic process named ArtistSearch or by an atomic process named
AuthorSearch. A data flow link exists between the output of ArtistSearch to
the input of AuthorSearch. Although this Process Model is legal in OWL-S, it is
flawed. This is because either AuthorSearch or ArtistSearch is executed, but
not both. Thus, whenever AuthorSearch is executed, ArtistSearch is not and
therefore the input to AuthorSearch is never instantiated.

The PROMELA model generated by the mapping described thus far, would
detect the harmful interaction between control flow and data flow. The model
of the choice statement specifies that one of the two atomic processes will exe-
cute, while the assert constraint on the input of AuthorSearch requires that
ArtistSearch is always instantiated. Since there does not exist a model where
both claims are simultaneously true, SPIN reports an error. The ability to detect
such interactions between data flow and control flow in OWL-S Process Models
is one of the main contributions of this work, which goes beyond other verifica-
tion models constructed for OWL-S. Indeed we claim that the model provided
by Narayanan et al. [9], would not detect the flaw in the process model described
above.

12 Ankolekar et al.

5.2 Summary of the OWL-S Model construction

This section presented a detailed description of the modeling of OWL-S Process
Models in the PROMELA modeling language. A summary of our modeling is
presented in Table 1, highlighting the OWL-S Process Model features retained,
partially modeled and the features out of scope. We already discussed how the
checking of data values could be deferred to a type-checker or semantic reasoner.
Thus, while we represent inputs and outputs, we do not represent their values
or their (ontological) data-type, limiting ourselves to modeling assignment.

Similarly, we do not model OWL-S preconditions and effects. Preconditions
to OWL-S processes are essentially warnings, that if the preconditions are not
heeded, the execution of the process may fail. If the client is a hard-coded pro-
cess, then the preconditions and effects serve as warnings or information for the
programmer; on the other hand, if the client is an agent, the OWL-S precon-
ditions and effects are for the benefit of the agent’s planner. However, there is
nothing to prevent a client from ignoring the preconditions, trying to execute
the process, and possibly failing. Thus, OWL-S preconditions and effects do not
affect execution of the Process Model. Consequently, they do not affect the ver-
ification of the Process Model either. Nevertheless, if a client wishes to ensure
that the preconditions can be fulfilled in addition to verifying the Process Model,
a promising approach might be to use a planner based on model-checking [4].

6 Verification of the Amazon example

Given a PROMELA specification of an OWL-S Process Model, SPIN constructs
a verifier, that can check several claims on the execution of the Process Model.
These properties include the values of certain variables at certain points in the
code and true statements that can be made about execution states (state proper-
ties) or the paths of execution (path properties). In addition, since SPIN searches
the entire state space of a verification model, it can also identify unreachable or
dead code in a Process Model.

In this section, we present various kinds of verification that can be performed
on a PROMELA model generated by the mapping described in the sections above.
Using SPIN and the PROMELA specification presented in the previous section,
several properties of the execution of the Amazon OWL-S Process Model were
verified. These properties were verified as part of five tests described below. For

| Full Modeling | Partial Modeling | Out of scope |
Processes Conditions (non-deterministic choice)| Preconditions and Effects
Control Flow Inputs/Outputs (model assignment) | Data Values
Concurrency
Data Flow
Loops

Table 1. Summary of the Modeling of OWL-S Process Models in PROMELA .

Towards a Formal Verification of OWL-S Process Models 13

each test, the size of the model constructed by SPIN, the time taken in seconds
to construct the model and the time for verification were measured?®.

1. Simple Amazon: In the first case, the PROMELA specification of the Ama-
zon.com Web service was checked for basic safety conditions, such as the
absence of deadlocks and the correctness of the data-flow within the model
which derive directly from the mapping reported in the previous section.

2. Data flow: To the simple Amazon model, we added an assert statement to
verify the data flow between the Browse and ProductFound processes. The
statement specifies that Browse must return a product before the product is
added to the shopping cart, i.e. before ProductFound executes the process
AddToShoppingCart.

3. Liveness: Several interesting liveness claims can be made about the Ama-
zon example. For example, a client may wish to verify that the Amazon
Web service will always complete and not execute in an infinite loop, be-
fore deciding to use it. In other words, the user would like to express the
requirement that “ShopBook process will eventually complete.” In LTL this
statement is expressed as: {Done_ShopBook. Another liveness claim a client
may wish to verify is that if a desired product is found with Amazon, then
the client can always add it to the shopping cart. This can be expressed
as ”in every execution sequence in which a product was found, the next
process to be executed is AddToShoppingCart.” In LTL this statement is
expressed as : O(productAvailable — X (ODone_AddToShoppingCart)). In
other words, whenever productAvailable is true, in the next state, the
AddToShoppingCart process will eventually complete.

4. Loop-2 and Loop-3: In order to test how loops could affect the performance
of SPIN, we added a loop to the Promela model, which created multiple
concurrent instances of ShopBook. In the cases of Loop-2 and Loop-3, two
and three concurrent instances of ShopBook were created respectively.

The experiment shows that the verification of OWL-S Process Models that
do not contain any loops can be done very effectively. This is an important
result since we expect that the great majority of Process Models will be loop-
freeS. Narayanan et al. [9] shows that the complexity the verification of the

5 The tests were carried out on a 750MHz Pentium 4 machine with 256 MB of memory.
6 The great majority of e-business sites available on the Web are loop-free. We expect
that these sites provide a blue print for e-commerce Web services.

| | #States | Model Construction Time Verification Time

Amazon 132 0.20 0.01
Data flow 139 0.35 0.02
Liveness 345 0.15 0.04
Loop-2 654382 0.03 8.77
Loop-3 3902280 0.04 >7200

Table 2. Performance of OWL-S verification using SPIN (time in seconds).

14 Ankolekar et al.

OWL-S Process Model with loops is PSPACE while the complexity of the same
model without loops is NP-complete. Consistent with Narayanan’s claim, the
search complexity increases greatly, when the OWL-S Process Model is aug-
mented with additional loops. However, it should be pointed out that the loops
we constructed are among the most difficult to verify since they spin off two
concurrent executions of the Amazon’s Process Model. Sequential executions of
Process Models would certainly exhibit less interaction.

The exponential increase in number of states and verification time, while
troublesome, seems to be manageable since checking more than two concur-
rent instances of ShopBook is superfluous and violates the requirement that the
verification model be the minimum sufficient model to perform the verification
successfully. Verifying two concurrent instances of ShopBook reveal all the dan-
gerous interaction effects just as well as three concurrent instances do. Therefore,
we do not gain in verification power by checking more than two instances. In our
future research we will search for a better modeling of loops that will minimize
the state explosion that has been revealed by our experiments.

7 Conclusions

In this paper we proposed a procedure for the verification of correctness claims
about OWL-S Process Models. We described a mapping of OWL-S statements
into equivalent PROMELA statements that can be evaluated by the SPIN model
checker. In the process, a number of abstractions were presented for OWL-S
Process Models. The abstractions reduce the complexity of verification while
producing a model that is sufficiently rich to be able to make useful claims
about OWL-S Process Models.

The work presented here is a starting point and we see numerous possible ex-
tensions to it. For instance, we intend to relax some of the modeling abstractions
to report a richer output. In particular, we would like to specify not only the
reachability of states, but also under which conditions a state is reachable. This
information is important for a Web service client because it typically needs to
know what information must be sought in order to guarantee a correct execution
of the Process Model and what kind of commitments it will have to make. To
this extent we are currently exploring the use of a different verification system,
specifically NuSMV [3] which may allow a natural representation of conditions.

Another extension of this work that we would like to pursue is the automatic
generation of liveness claims. Based on the OWL-S markup and an appropriate
services ontology, a Web service client should be able to reason about processes
in an OWL-S Process Model, generating claims on-the-fly, such as ”the Delivery
process always executes after the Buy process.” These claims can then be verified
before the client decides to invoke the Web service. There are multiple sources of
liveness claims; in this paper we tested the reachability of one particular state,
but the client of a service may also want to verify the correctness with respect
to policies that the client has to satisfy.

Towards a Formal Verification of OWL-S Process Models 15

Finally, this work does not include any modeling of the interaction between

the client and the server. We intend to extend the verification to the data map-
pings specified in the OWL-S Grounding. Such verification may provide guar-
antees on the data that processes will receive from the Server. In this direction
the work proposed in [13,6] is of particular interest since it may provide a rep-
resentation of the mapping between the XML data that Web services exchange
with the OWL based data representation used in the OWL-S Process Model.

References

1.

10.

11.

12.

13.

T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, 1. Trickovic, and S. Weerawarana.
Specification: Business process execution language for web services version 1.1.
http://www.ibm.com/developerworks/library /ws-bpel/, 2003.

. A. Ankolekar, M. Paolucci, and K. Sycara. Spinning the OWL-S Process Model—

Towards the verification of the OWL-S Process Models. Presented at the Semantic
Web Services: Preparing to Meet the World of Business Applications workshop
at the International Semantic Web Conference (ISWC 2004), Hiroshima, Japan,
2004.

A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic model
checking. In Proceeding of International Conference on Computer-Aided Verifica-
tion (CAV 2002), Copenhagen, Denmark, 2002.

A. Cimatti and M. Roveri Conformant Planning via Symbolic Model Checking. In
Journal of Artificial Intelligence Research, 31, pg. 305-338, 2000.

. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,

Cambridge, MA, USA, 2000.

X. Fu, T. Bultan, and J. Su. Analysis of interacting bpel web services. In Pro-
ceedings of the 13th International World Wide Web Conference (WWW’04), New
York, NY, USA, 2004. ACM Press.

H.Foster, S. Uchitel, J. Kramer, and J. Magee. Model-based verification of web
service compositions. In Proceedings of the Automated Software Engineering (ASE)
Conference 2003, Montreal, Canada, October 2003.

G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, 2003.

S. Narayanan and S. Mcllraith. Simulation, verification and automated composi-
tion of web services. In Proceedings of the Eleventh International World Wide Web
Conference (WWW-11), May 2002.

M. Paolucci, A. Ankolekar, M. Srinivasan, and K. Sycara. The DAML-S virtual ma-
chine. In Second International Semantic Web Conference, Sanibel Island, Florida,
USA, 2003.

K. Schmidt and C. Stahl. A petri net semantic for bpeldws - validation and
application. In Proceedings of the 11th Workshop on Algorithms and Tools for
Petri Nets (AWPN ’04), Paderborn, 2004.

C. Walton. Model checking multi-agent web services. In Proceedings of the 2004
Spring Symposium on Semantic Web Services, Stanford, CA, USA, March 2004.
T. B. X. Fu and J. Su. Wsat: A tool for formal analysis of web services. In
Proceedings of the 16th International Conference on Computer Aided Verification,
2004.

